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Deep Learning

This chapter covers the important topic of deep learning. At the time of
deep
learningwriting (2020), deep learning is a very active area of research in the machine

learning and artificial intelligence communities. The cornerstone of deep
learning is the neural network.

neural
networkNeural networks rose to fame in the late 1980s. There was a lot of excite-

ment and a certain amount of hype associated with this approach, and they
were the impetus for the popular Neural Information Processing Systems
meetings (NeurIPS, formerly NIPS) held every year, typically in exotic
places like ski resorts. This was followed by a synthesis stage, where the
properties of neural networks were analyzed by machine learners, math-
ematicians and statisticians; algorithms were improved, and the method-
ology stabilized. Then along came SVMs, boosting, and random forests,
and neural networks fell somewhat from favor. Part of the reason was that
neural networks required a lot of tinkering, while the new methods were
more automatic. Also, on many problems the new methods outperformed
poorly-trained neural networks. This was the status quo for the first decade
in the new millennium.
All the while, though, a core group of neural-network enthusiasts were

pushing their technology harder on ever-larger computing architectures and
data sets. Neural networks resurfaced after 2010 with the new name deep
learning, with new architectures, additional bells and whistles, and a string
of success stories on some niche problems such as image and video classifi-
cation, speech and text modeling. Many in the field believe that the major
reason for these successes is the availability of ever-larger training datasets,
made possible by the wide-scale use of digitization in science and industry.
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404 10. Deep Learning

In this chapter we discuss the basics of neural networks and deep learning,
and then go into some of the specializations for specific problems, such as
convolutional neural networks (CNNs) for image classification, and recur-
rent neural networks (RNNs) for time series and other sequences. We will
also demonstrate these models using the R package keras, which interfaces
with the tensorflow deep-learning software developed at Google.1

The material in this chapter is slightly more challenging than elsewhere
in this book.

10.1 Single Layer Neural Networks

A neural network takes an input vector of p variables X = (X1, X2, . . . , Xp)
and builds a nonlinear function f(X) to predict the response Y . We have
built nonlinear prediction models in earlier chapters, using trees, boosting
and generalized additive models. What distinguishes neural networks from
these methods is the particular structure of the model. Figure 10.1 shows
a simple feed-forward neural network for modeling a quantitative response

feed-forward
neural
network

using p = 4 predictors. In the terminology of neural networks, the four fea-
tures X1, . . . , X4 make up the units in the input layer. The arrows indicate

input layerthat each of the inputs from the input layer feeds into each of the K hidden
units (we get to pick K; here we chose 5). The neural network model has

hidden units
the form

f(X) = β0 +
∑K

k=1 βkhk(X)

= β0 +
∑K

k=1 βkg(wk0 +
∑p

j=1 wkjXj).
(10.1)

It is built up here in two steps. First the K activations Ak, k = 1, . . . ,K, in
activations

the hidden layer are computed as functions of the input features X1, . . . , Xp,

Ak = hk(X) = g(wk0 +
∑p

j=1 wkjXj), (10.2)

where g(z) is a nonlinear activation function that is specified in advance.
activation
functionWe can think of each Ak as a different transformation hk(X) of the original

features, much like the basis functions of Chapter 7. These K activations
from the hidden layer then feed into the output layer, resulting in

f(X) = β0 +
K∑

k=1

βkAk, (10.3)

a linear regression model in the K = 5 activations. All the parameters
β0, . . . ,βK and w10, . . . , wKp need to be estimated from data. In the early

1For more information about keras, see Chollet et al. (2015) “Keras”, available
at https://keras.io. For more information about tensorflow, see Abadi et al. (2015)
“TensorFlow: Large-scale machine learning on heterogeneous distributed systems”, avail-
able at https://www.tensorflow.org/.
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FIGURE 10.1. Neural network with a single hidden layer. The hidden layer
computes activations Ak = hk(X) that are nonlinear transformations of linear
combinations of the inputs X1, X2, . . . , Xp. Hence these Ak are not directly ob-
served. The functions hk(·) are not fixed in advance, but are learned during the
training of the network. The output layer is a linear model that uses these acti-
vations Ak as inputs, resulting in a function f(X).

instances of neural networks, the sigmoid activation function was favored,
sigmoid

g(z) =
ez

1 + ez
=

1

1 + e−z
, (10.4)

which is the same function used in logistic regression to convert a linear
function into probabilities between zero and one (see Figure 10.2). The
preferred choice in modern neural networks is the ReLU (rectified linear

ReLU
unit) activation function, which takes the form

rectified
linear unit

g(z) = (z)+ =

{
0 if z < 0
z otherwise.

(10.5)

A ReLU activation can be computed and stored more efficiently than a
sigmoid activation. Although it thresholds at zero, because we apply it to a
linear function (10.2) the constant term wk0 will shift this inflection point.
So in words, the model depicted in Figure 10.1 derives five new features

by computing five different linear combinations of X, and then squashes
each through an activation function g(·) to transform it. The final model
is linear in these derived variables.
The name neural network originally derived from thinking of these hidden

units as analogous to neurons in the brain — values of the activations
Ak = hk(X) close to one are firing, while those close to zero are silent
(using the sigmoid activation function).
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FIGURE 10.2. Activation functions. The piecewise-linear ReLU function is pop-
ular for its efficiency and computability. We have scaled it down by a factor of
five for ease of comparison.

The nonlinearity in the activation function g(·) is essential, since without
it the model f(X) in (10.1) would collapse into a simple linear model in
X1, . . . , Xp. Moreover, having a nonlinear activation function allows the
model to capture complex nonlinearities and interaction effects. Consider
a very simple example with p = 2 input variables X = (X1, X2), and
K = 2 hidden units h1(X) and h2(X) with g(z) = z2. We specify the other
parameters as

β0 = 0, β1 = 1
4 , β2 = − 1

4 ,
w10 = 0, w11 = 1, w12 = 1,
w20 = 0, w21 = 1, w22 = −1.

(10.6)

From (10.2), this means that

h1(X) = (0 +X1 +X2)2,
h2(X) = (0 +X1 −X2)2.

(10.7)

Then plugging (10.7) into (10.1), we get

f(X) = 0 + 1
4 · (0 +X1 +X2)2 − 1

4 · (0 +X1 −X2)2

= 1
4

[
(X1 +X2)2 − (X1 −X2)2

]

= X1X2.
(10.8)

So the sum of two nonlinear transformations of linear functions can give
us an interaction! In practice we would not use a quadratic function for
g(z), since we would always get a second-degree polynomial in the original
coordinates X1, . . . , Xp. The sigmoid or ReLU activations do not have such
a limitation.
Fitting a neural network requires estimating the unknown parameters in

(10.1). For a quantitative response, typically squared-error loss is used, so
that the parameters are chosen to minimize

n∑

i=1

(yi − f(xi))
2 . (10.9)
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FIGURE 10.3. Examples of handwritten digits from the MNIST corpus. Each
grayscale image has 28× 28 pixels, each of which is an eight-bit number (0–255)
which represents how dark that pixel is. The first 3, 5, and 8 are enlarged to show
their 784 individual pixel values.

Details about how to perform this minimization are provided in Section 10.7.

10.2 Multilayer Neural Networks

Modern neural networks typically have more than one hidden layer, and
often many units per layer. In theory a single hidden layer with a large
number of units has the ability to approximate most functions. However,
the learning task of discovering a good solution is made much easier with
multiple layers each of modest size.
We will illustrate a large dense network on the famous and publicly

available MNIST handwritten digit dataset.2 Figure 10.3 shows examples of
these digits. The idea is to build a model to classify the images into their
correct digit class 0–9. Every image has p = 28 × 28 = 784 pixels, each
of which is an eight-bit grayscale value between 0 and 255 representing
the relative amount of the written digit in that tiny square.3 These pixels
are stored in the input vector X (in, say, column order). The output is
the class label, represented by a vector Y = (Y0, Y1, . . . , Y9) of 10 dummy
variables, with a one in the position corresponding to the label, and zeros
elsewhere. In the machine learning community, this is known as one-hot
encoding. There are 60,000 training images, and 10,000 test images.

one-hot
encodingOn a historical note, digit recognition problems were the catalyst that

accelerated the development of neural network technology in the late 1980s
at AT&T Bell Laboratories and elsewhere. Pattern recognition tasks of this

2See LeCun, Cortes, and Burges (2010) “The MNIST database of handwritten digits”,
available at http://yann.lecun.com/exdb/mnist.

3In the analog-to-digital conversion process, only part of the written numeral may
fall in the square representing a particular pixel.
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kind are relatively simple for humans. Our visual system occupies a large
fraction of our brains, and good recognition is an evolutionary force for
survival. These tasks are not so simple for machines, and it has taken more
than 30 years to refine the neural-network architectures to match human
performance.
Figure 10.4 shows a multilayer network architecture that works well for

solving the digit-classification task. It differs from Figure 10.1 in several
ways:

• It has two hidden layers L1 (256 units) and L2 (128 units) rather
than one. Later we will see a network with seven hidden layers.

• It has ten output variables, rather than one. In this case the ten vari-
ables really represent a single qualitative variable and so are quite
dependent. (We have indexed them by the digit class 0–9 rather than
1–10, for clarity.) More generally, in multi-task learning one can pre-

multi-task
learningdict different responses simultaneously with a single network; they all

have a say in the formation of the hidden layers.

• The loss function used for training the network is tailored for the
multiclass classification task.

The first hidden layer is as in (10.2), with

A(1)
k = h(1)

k (X)

= g(w(1)
k0 +

∑p
j=1 w

(1)
kj Xj)

(10.10)

for k = 1, . . . ,K1. The second hidden layer treats the activations A(1)
k of

the first hidden layer as inputs and computes new activations

A(2)
ℓ = h(2)

ℓ (X)

= g(w(2)
ℓ0 +

∑K1

k=1 w
(2)
ℓk A(1)

k )
(10.11)

for ℓ = 1, . . . ,K2. Notice that each of the activations in the second layer

A(2)
ℓ = h(2)

ℓ (X) is a function of the input vector X. This is the case because

while they are explicitly a function of the activations A(1)
k from layer L1,

these in turn are functions of X. This would also be the case with more
hidden layers. Thus, through a chain of transformations, the network is
able to build up fairly complex transformations of X that ultimately feed
into the output layer as features.

We have introduced additional superscript notation such as h(2)
ℓ (X) and

w(2)
ℓj in (10.10) and (10.11) to indicate to which layer the activations and

weights (coefficients) belong, in this case layer 2. The notation W1 in Fig-
weights

ure 10.4 represents the entire matrix of weights that feed from the input
layer to the first hidden layer L1. This matrix will have 785×256 = 200,960
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FIGURE 10.4. Neural network diagram with two hidden layers and multiple
outputs, suitable for the MNIST handwritten-digit problem. The input layer has
p = 784 units, the two hidden layers K1 = 256 and K2 = 128 units respectively,
and the output layer 10 units. Along with intercepts (referred to as biases in the
deep-learning community) this network has 235,146 parameters (referred to as
weights).

elements; there are 785 rather than 784 because we must account for the
intercept or bias term.4

bias
Each element A(1)

k feeds to the second hidden layer L2 via the matrix of
weights W2 of dimension 257× 128 = 32,896.
We now get to the output layer, where we now have ten responses rather

than one. The first step is to compute ten different linear models similar
to our single model (10.1),

Zm = βm0 +
∑K2

ℓ=1 βmℓh
(2)
ℓ (X)

= βm0 +
∑K2

ℓ=1 βmℓA
(2)
ℓ ,

(10.12)

for m = 0, 1, . . . , 9. The matrix B stores all 129 × 10 = 1,290 of these
weights.

4The use of “weights” for coefficients and “bias” for the intercepts wk0 in (10.2) is
popular in the machine learning community; this use of bias is not to be confused with
the “bias-variance” usage elsewhere in this book.
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Method Test Error

Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

TABLE 10.1. Test error rate on the MNIST data, for neural networks with two
forms of regularization, as well as multinomial logistic regression and linear dis-
criminant analysis. In this example, the extra complexity of the neural network
leads to a marked improvement in test error.

If these were all separate quantitative responses, we would simply set
each fm(X) = Zm and be done. However, we would like our estimates to
represent class probabilities fm(X) = Pr(Y = m|X), just like in multi-
nomial logistic regression in Section 4.3.5. So we use the special softmax

softmax
activation function (see (4.13) on page 141),

fm(X) = Pr(Y = m|X) =
eZm

∑9
ℓ=0 e

Zℓ
, (10.13)

for m = 0, 1, . . . , 9. This ensures that the 10 numbers behave like proba-
bilities (non-negative and sum to one). Even though the goal is to build
a classifier, our model actually estimates a probability for each of the 10
classes. The classifier then assigns the image to the class with the highest
probability.
To train this network, since the response is qualitative, we look for coef-

ficient estimates that minimize the negative multinomial log-likelihood

−
n∑

i=1

9∑

m=0

yim log(fm(xi)), (10.14)

also known as the cross-entropy. This is a generalization of the crite- cross-
entropyrion (4.5) for two-class logistic regression. Details on how to minimize this

objective are given in Section 10.7. If the response were quantitative, we
would instead minimize squared-error loss as in (10.9).
Table 10.1 compares the test performance of the neural network with

two simple models presented in Chapter 4 that make use of linear decision
boundaries: multinomial logistic regression and linear discriminant analysis.
The improvement of neural networks over both of these linear methods is
dramatic: the network with dropout regularization achieves a test error rate
below 2% on the 10,000 test images. (We describe dropout regularization in
Section 10.7.3.) In Section 10.9.2 of the lab, we present the code for fitting
this model, which runs in just over two minutes on a laptop computer.
Adding the number of coefficients in W1, W2 and B, we get 235,146 in

all, more than 33 times the number 785 × 9 = 7,065 needed for multino-
mial logistic regression. Recall that there are 60,000 images in the training
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FIGURE 10.5. A sample of images from the CIFAR100 database: a collection of
natural images from everyday life, with 100 different classes represented.

set. While this might seem like a large training set, there are almost four
times as many coefficients in the neural network model as there are ob-
servations in the training set! To avoid overfitting, some regularization is
needed. In this example, we used two forms of regularization: ridge regu-
larization, which is similar to ridge regression from Chapter 6, and dropout

dropout
regularization. We discuss both forms of regularization in Section 10.7.

10.3 Convolutional Neural Networks

Neural networks rebounded around 2010 with big successes in image classi-
fication. Around that time, massive databases of labeled images were being
accumulated, with ever-increasing numbers of classes. Figure 10.5 shows
75 images drawn from the CIFAR100 database.5 This database consists of
60,000 images labeled according to 20 superclasses (e.g. aquatic mammals),
with five classes per superclass (beaver, dolphin, otter, seal, whale). Each
image has a resolution of 32 × 32 pixels, with three eight-bit numbers per
pixel representing red, green and blue. The numbers for each image are
organized in a three-dimensional array called a feature map. The first two

feature map
axes are spatial (both are 32-dimensional), and the third is the channel

channel
axis,6 representing the three colors. There is a designated training set of
50,000 images, and a test set of 10,000.
A special family of convolutional neural networks (CNNs) has evolved for

convolutional
neural
networks

classifying images such as these, and has shown spectacular success on a
wide range of problems. CNNs mimic to some degree how humans classify
images, by recognizing specific features or patterns anywhere in the image

5See Chapter 3 of Krizhevsky (2009) “Learning multiple layers of fea-
tures from tiny images”, available at https://www.cs.toronto.edu/~kriz/

learning-features-2009-TR.pdf.
6The term channel is taken from the signal-processing literature. Each channel is a

distinct source of information.
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FIGURE 10.6. Schematic showing how a convolutional neural network classifies
an image of a tiger. The network takes in the image and identifies local features.
It then combines the local features in order to create compound features, which in
this example include eyes and ears. These compound features are used to output
the label “tiger”.

that distinguish each particular object class. In this section we give a brief
overview of how they work.
Figure 10.6 illustrates the idea behind a convolutional neural network on

a cartoon image of a tiger.7

The network first identifies low-level features in the input image, such
as small edges, patches of color, and the like. These low-level features are
then combined to form higher-level features, such as parts of ears, eyes,
and so on. Eventually, the presence or absence of these higher-level features
contributes to the probability of any given output class.
How does a convolutional neural network build up this hierarchy? It com-

bines two specialized types of hidden layers, called convolution layers and
pooling layers. Convolution layers search for instances of small patterns in
the image, whereas pooling layers downsample these to select a prominent
subset. In order to achieve state-of-the-art results, contemporary neural-
network architectures make use of many convolution and pooling layers.
We describe convolution and pooling layers next.

10.3.1 Convolution Layers

A convolution layer is made up of a large number of convolution filters, each
convolution
layer

convolution
filter

of which is a template that determines whether a particular local feature is
present in an image. A convolution filter relies on a very simple operation,
called a convolution, which basically amounts to repeatedly multiplying
matrix elements and then adding the results.

7Thanks to Elena Tuzhilina for producing the diagram and https://www.

cartooning4kids.com/ for permission to use the cartoon tiger.
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To understand how a convolution filter works, consider a very simple
example of a 4× 3 image:

Original Image =

⎡

⎢⎢⎣

a b c
d e f
g h i
j k l

⎤

⎥⎥⎦ .

Now consider a 2× 2 filter of the form

Convolution Filter =

[
α β
γ δ

]
.

When we convolve the image with the filter, we get the result8

Convolved Image =

⎡

⎣
aα+ bβ + dγ + eδ bα+ cβ + eγ + fδ
dα+ eβ + gγ + hδ eα+ fβ + hγ + iδ
gα+ hβ + jγ + kδ hα+ iβ + kγ + lδ

⎤

⎦ .

For instance, the top-left element comes from multiplying each element in
the 2 × 2 filter by the corresponding element in the top left 2 × 2 portion
of the image, and adding the results. The other elements are obtained in
a similar way: the convolution filter is applied to every 2 × 2 submatrix
of the original image in order to obtain the convolved image. If a 2 × 2
submatrix of the original image resembles the convolution filter, then it will
have a large value in the convolved image; otherwise, it will have a small
value. Thus, the convolved image highlights regions of the original image
that resemble the convolution filter. We have used 2 × 2 as an example;
in general convolution filters are small ℓ1 × ℓ2 arrays, with ℓ1 and ℓ2 small
positive integers that are not necessarily equal.
Figure 10.7 illustrates the application of two convolution filters to a 192×

179 image of a tiger, shown on the left-hand side.9 Each convolution filter
is a 15 × 15 image containing mostly zeros (black), with a narrow strip
of ones (white) oriented either vertically or horizontally within the image.
When each filter is convolved with the image of the tiger, areas of the tiger
that resemble the filter (i.e. that have either horizontal or vertical stripes or
edges) are given large values, and areas of the tiger that do not resemble the
feature are given small values. The convolved images are displayed on the
right-hand side. We see that the horizontal stripe filter picks out horizontal
stripes and edges in the original image, whereas the vertical stripe filter
picks out vertical stripes and edges in the original image.

8The convolved image is smaller than the original image because its dimension is
given by the number of 2 × 2 submatrices in the original image. Note that 2 × 2 is the
dimension of the convolution filter. If we want the convolved image to have the same
dimension as the original image, then padding can be applied.

9The tiger image used in Figures 10.7–10.9 was obtained from the public domain
image resource https://www.needpix.com/.
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FIGURE 10.7. Convolution filters find local features in an image, such as edges
and small shapes. We begin with the image of the tiger shown on the left, and
apply the two small convolution filters in the middle. The convolved images high-
light areas in the original image where details similar to the filters are found.
Specifically, the top convolved image highlights the tiger’s vertical stripes, whereas
the bottom convolved image highlights the tiger’s horizontal stripes. We can think
of the original image as the input layer in a convolutional neural network, and
the convolved images as the units in the first hidden layer.

We have used a large image and two large filters in Figure 10.7 for illus-
tration. For the CIFAR100 database there are 32×32 color pixels per image,
and we use 3× 3 convolution filters.
In a convolution layer, we use a whole bank of filters to pick out a variety

of differently-oriented edges and shapes in the image. Using predefined
filters in this way is standard practice in image processing. By contrast,
with CNNs the filters are learned for the specific classification task. We can
think of the filter weights as the parameters going from an input layer to a
hidden layer, with one hidden unit for each pixel in the convolved image.
This is in fact the case, though the parameters are highly structured and
constrained (see Exercise 4 for more details). They operate on localized
patches in the input image (so there are many structural zeros), and the
same weights in a given filter are reused for all possible patches in the image
(so the weights are constrained).10

We now give some additional details.

• Since the input image is in color, it has three channels represented
by a three-dimensional feature map (array). Each channel is a two-
dimensional (32× 32) feature map — one for red, one for green, and
one for blue. A single convolution filter will also have three channels,
one per color, each of dimension 3×3, with potentially different filter
weights. The results of the three convolutions are summed to form

10This used to be called weight sharing in the early years of neural networks.
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a two-dimensional output feature map. Note that at this point the
color information has been used, and is not passed on to subsequent
layers except through its role in the convolution.

• If we use K different convolution filters at this first hidden layer,
we get K two-dimensional output feature maps, which together are
treated as a single three-dimensional feature map. We view each of
the K output feature maps as a separate channel of information, so
now we have K channels in contrast to the three color channels of
the original input feature map. The three-dimensional feature map is
just like the activations in a hidden layer of a simple neural network,
except organized and produced in a spatially structured way.

• We typically apply the ReLU activation function (10.5) to the con-
volved image. This step is sometimes viewed as a separate layer in
the convolutional neural network, in which case it is referred to as a
detector layer.

detector
layer

10.3.2 Pooling Layers

A pooling layer provides a way to condense a large image into a smaller
pooling

summary image. While there are a number of possible ways to perform
pooling, the max pooling operation summarizes each non-overlapping 2× 2
block of pixels in an image using the maximum value in the block. This
reduces the size of the image by a factor of two in each direction, and it
also provides some location invariance: i.e. as long as there is a large value
in one of the four pixels in the block, the whole block registers as a large
value in the reduced image.
Here is a simple example of max pooling:

Max pool

⎡

⎢⎢⎣

1 2 5 3
3 0 1 2
2 1 3 4
1 1 2 0

⎤

⎥⎥⎦→
[
3 5
2 4

]
.

10.3.3 Architecture of a Convolutional Neural Network

So far we have defined a single convolution layer — each filter produces a
new two-dimensional feature map. The number of convolution filters in a
convolution layer is akin to the number of units at a particular hidden layer
in a fully-connected neural network of the type we saw in Section 10.2.
This number also defines the number of channels in the resulting three-
dimensional feature map. We have also described a pooling layer, which
reduces the first two dimensions of each three-dimensional feature map.
Deep CNNs have many such layers. Figure 10.8 shows a typical architecture
for a CNN for the CIFAR100 image classification task.
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FIGURE 10.8. Architecture of a deep CNN for the CIFAR100 classification task.
Convolution layers are interspersed with 2× 2 max-pool layers, which reduce the
size by a factor of 2 in both dimensions.

At the input layer, we see the three-dimensional feature map of a color
image, where the channel axis represents each color by a 32 × 32 two-
dimensional feature map of pixels. Each convolution filter produces a new
channel at the first hidden layer, each of which is a 32 × 32 feature map
(after some padding at the edges). After this first round of convolutions, we
now have a new “image”; a feature map with considerably more channels
than the three color input channels (six in the figure, since we used six
convolution filters).
This is followed by a max-pool layer, which reduces the size of the feature

map in each channel by a factor of four: two in each dimension.
This convolve-then-pool sequence is now repeated for the next two layers.

Some details are as follows:

• Each subsequent convolve layer is similar to the first. It takes as input
the three-dimensional feature map from the previous layer and treats
it like a single multi-channel image. Each convolution filter learned
has as many channels as this feature map.

• Since the channel feature maps are reduced in size after each pool
layer, we usually increase the number of filters in the next convolve
layer to compensate.

• Sometimes we repeat several convolve layers before a pool layer. This
effectively increases the dimension of the filter.

These operations are repeated until the pooling has reduced each channel
feature map down to just a few pixels in each dimension. At this point the
three-dimensional feature maps are flattened — the pixels are treated as
separate units — and fed into one or more fully-connected layers before
reaching the output layer, which is a softmax activation for the 100 classes
(as in (10.13)).
There are many tuning parameters to be selected in constructing such a

network, apart from the number, nature, and sizes of each layer. Dropout
learning can be used at each layer, as well as lasso or ridge regularization
(see Section 10.7). The details of constructing a convolutional neural net-
work can seem daunting. Fortunately, terrific software is available, with
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FIGURE 10.9. Data augmentation. The original image (leftmost) is distorted
in natural ways to produce different images with the same class label. These dis-
tortions do not fool humans, and act as a form of regularization when fitting the
CNN.

extensive examples and vignettes that provide guidance on sensible choices
for the parameters. For the CIFAR100 official test set, the best accuracy as
of this writing is just above 75%, but undoubtedly this performance will
continue to improve.

10.3.4 Data Augmentation

An additional important trick used with image modeling is data augment-
data aug-
mentationation. Essentially, each training image is replicated many times, with each

replicate randomly distorted in a natural way such that human recognition
is unaffected. Figure 10.9 shows some examples. Typical distortions are
zoom, horizontal and vertical shift, shear, small rotations, and in this case
horizontal flips. At face value this is a way of increasing the training set
considerably with somewhat different examples, and thus protects against
overfitting. In fact we can see this as a form of regularization: we build a
cloud of images around each original image, all with the same label. This
kind of fattening of the data is similar in spirit to ridge regularization.
We will see in Section 10.7.2 that the stochastic gradient descent al-

gorithms for fitting deep learning models repeatedly process randomly-
selected batches of, say, 128 training images at a time. This works hand-in-
glove with augmentation, because we can distort each image in the batch
on the fly, and hence do not have to store all the new images.

10.3.5 Results Using a Pretrained Classifier

Here we use an industry-level pretrained classifier to predict the class of
some new images. The resnet50 classifier is a convolutional neural network
that was trained using the imagenet data set, which consists of millions of
images that belong to an ever-growing number of categories.11 Figure 10.10

11For more information about resnet50, see He, Zhang, Ren, and Sun (2015) “Deep
residual learning for image recognition”, https://arxiv.org/abs/1512.03385. For de-
tails about imagenet, see Russakovsky, Deng, et al. (2015) “ImageNet Large Scale
Visual Recognition Challenge”, in International Journal of Computer Vision.
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flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 kite 0.60 fountain 0.35
spoonbill 0.17 great grey owl 0.09 nail 0.12
white stork 0.00 robin 0.06 hook 0.07

Lhasa Apso cat Cape weaver
Tibetan terrier 0.56 Old English sheepdog 0.82 jacamar 0.28
Lhasa 0.32 Shih-Tzu 0.04 macaw 0.12
cocker spaniel 0.03 Persian cat 0.04 robin 0.12

FIGURE 10.10. Classification of six photographs using the resnet50 CNN
trained on the imagenet corpus. The table below the images displays the true
(intended) label at the top of each panel, and the top three choices of the classifier
(out of 100). The numbers are the estimated probabilities for each choice. (A kite
is a raptor, but not a hawk.)

demonstrates the performance of resnet50 on six photographs (private col-
lection of one of the authors).12 The CNN does a reasonable job classifying
the hawk in the second image. If we zoom out as in the third image, it
gets confused and chooses the fountain rather than the hawk. In the final
image a “jacamar” is a tropical bird from South and Central America with
similar coloring to the South African Cape Weaver. We give more details
on this example in Section 10.9.4.
Much of the work in fitting a CNN is in learning the convolution filters

at the hidden layers; these are the coefficients of a CNN. For models fit to
massive corpora such as imagenet with many classes, the output of these

12These resnet results can change with time, since the publicly-trained model gets
updated periodically.
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filters can serve as features for general natural-image classification prob-
lems. One can use these pretrained hidden layers for new problems with
much smaller training sets (a process referred to as weight freezing), and

weight
freezingjust train the last few layers of the network, which requires much less data.

The vignettes and book13 that accompany the keras package give more
details on such applications.

10.4 Document Classification

In this section we introduce a new type of example that has important
applications in industry and science: predicting attributes of documents.
Examples of documents include articles in medical journals, Reuters news
feeds, emails, tweets, and so on. Our example will be IMDb (Internet Movie
Database) ratings — short documents where viewers have written critiques
of movies.14 The response in this case is the sentiment of the review, which
will be positive or negative.
Here is the beginning of a rather amusing negative review:

This has to be one of the worst films of the 1990s. When my
friends & I were watching this film (being the target audience it
was aimed at) we just sat & watched the first half an hour with
our jaws touching the floor at how bad it really was. The rest
of the time, everyone else in the theater just started talking to
each other, leaving or generally crying into their popcorn . . .

Each review can be a different length, include slang or non-words, have
spelling errors, etc. We need to find a way to featurize such a document.

featurize
This is modern parlance for defining a set of predictors.
The simplest and most common featurization is the bag-of-words model.

bag-of-words
We score each document for the presence or absence of each of the words in
a language dictionary — in this case an English dictionary. If the dictionary
containsM words, that means for each document we create a binary feature
vector of length M , and score a 1 for every word present, and 0 otherwise.
That can be a very wide feature vector, so we limit the dictionary — in
this case to the 10,000 most frequently occurring words in the training
corpus of 25,000 reviews. Fortunately there are nice tools for doing this
automatically. Here is the beginning of a positive review that has been
redacted in this way:

⟨START ⟩ this film was just brilliant casting location scenery
story direction everyone’s really suited the part they played and

13Deep Learning with R by F. Chollet and J.J. Allaire, 2018, Manning Publications.
14For details, see Maas et al. (2011) “Learning word vectors for sentiment analysis”,

in Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 142–150.
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FIGURE 10.11. Accuracy of the lasso and a two-hidden-layer neural network
on the IMDb data. For the lasso, the x-axis displays − log(λ), while for the neural
network it displays epochs (number of times the fitting algorithm passes through
the training set). Both show a tendency to overfit, and achieve approximately the
same test accuracy.

you could just imagine being there robert ⟨UNK ⟩ is an amazing
actor and now the same being director ⟨UNK ⟩ father came from
the same scottish island as myself so i loved . . .

Here we can see many words have been omitted, and some unknown words
(UNK) have been marked as such. With this reduction the binary feature
vector has length 10,000, and consists mostly of 0’s and a smattering of 1’s
in the positions corresponding to words that are present in the document.
We have a training set and test set, each with 25,000 examples, and each
balanced with regard to sentiment. The resulting training feature matrix X
has dimension 25,000×10,000, but only 1.3% of the binary entries are non-
zero. We call such a matrix sparse, because most of the values are the same
(zero in this case); it can be stored efficiently in sparse matrix format.15 sparse

matrix
format

There are a variety of ways to account for the document length; here we
only score a word as in or out of the document, but for example one could
instead record the relative frequency of words. We split off a validation set
of size 2,000 from the 25,000 training observations (for model tuning), and
fit two model sequences:

15Rather than store the whole matrix, we can store instead the location and values
for the nonzero entries. In this case, since the nonzero entries are all 1, just the locations
are stored.
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• A lasso logistic regression using the glmnet package;

• A two-class neural network with two hidden layers, each with 16
ReLU units.

Both methods produce a sequence of solutions. The lasso sequence is in-
dexed by the regularization parameter λ. The neural-net sequence is in-
dexed by the number of gradient-descent iterations used in the fitting,
as measured by training epochs or passes through the training set (Sec-
tion 10.7). Notice that the training accuracy in Figure 10.11 (black points)
increases monotonically in both cases. We can use the validation error to
pick a good solution from each sequence (blue points in the plots), which
would then be used to make predictions on the test data set.
Note that a two-class neural network amounts to a nonlinear logistic

regression model. From (10.12) and (10.13) we can see that

log

(
Pr(Y = 1|X)

Pr(Y = 0|X)

)
= Z1 − Z0 (10.15)

= (β10 − β00) +
K2∑

ℓ=1

(β1ℓ − β0ℓ)A
(2)
ℓ .

(This shows the redundancy in the softmax function; for K classes we
really only need to estimate K−1 sets of coefficients. See Section 4.3.5.) In
Figure 10.11 we show accuracy (fraction correct) rather than classification accuracy
error (fraction incorrect), the former being more popular in the machine
learning community. Both models achieve a test-set accuracy of about 88%.
The bag-of-words model summarizes a document by the words present,

and ignores their context. There are at least two popular ways to take the
context into account:

• The bag-of-n-grams model. For example, a bag of 2-grams records
bag-of-n-
gramsthe consecutive co-occurrence of every distinct pair of words. “Bliss-

fully long” can be seen as a positive phrase in a movie review, while
“blissfully short” a negative.

• Treat the document as a sequence, taking account of all the words in
the context of those that preceded and those that follow.

In the next section we explore models for sequences of data, which have
applications in weather forecasting, speech recognition, language transla-
tion, and time-series prediction, to name a few. We continue with this IMDb

example there.

10.5 Recurrent Neural Networks

Many data sources are sequential in nature, and call for special treatment
when building predictive models. Examples include:
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FIGURE 10.12. Schematic of a simple recurrent neural network. The input is a
sequence of vectors {Xℓ}L1 , and here the target is a single response. The network
processes the input sequence X sequentially; each Xℓ feeds into the hidden layer,
which also has as input the activation vector Aℓ−1 from the previous element in
the sequence, and produces the current activation vector Aℓ. The same collections
of weights W, U and B are used as each element of the sequence is processed. The
output layer produces a sequence of predictions Oℓ from the current activation Aℓ,
but typically only the last of these, OL, is of relevance. To the left of the equal
sign is a concise representation of the network, which is unrolled into a more
explicit version on the right.

• Documents such as book and movie reviews, newspaper articles, and
tweets. The sequence and relative positions of words in a document
capture the narrative, theme and tone, and can be exploited in tasks
such as topic classification, sentiment analysis, and language transla-
tion.

• Time series of temperature, rainfall, wind speed, air quality, and so
on. We may want to forecast the weather several days ahead, or cli-
mate several decades ahead.

• Financial time series, where we track market indices, trading volumes,
stock and bond prices, and exchange rates. Here prediction is often
difficult, but as we will see, certain indices can be predicted with
reasonable accuracy.

• Recorded speech, musical recordings, and other sound recordings. We
may want to give a text transcription of a speech, or perhaps a lan-
guage translation. We may want to assess the quality of a piece of
music, or assign certain attributes.

• Handwriting, such as doctor’s notes, and handwritten digits such as
zip codes. Here we want to turn the handwriting into digital text, or
read the digits (optical character recognition).

In a recurrent neural network (RNN), the input object X is a sequence.
recurrent
neural
network
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Consider a corpus of documents, such as the collection of IMDb movie re-
views. Each document can be represented as a sequence of L words, so
X = {X1, X2, . . . , XL}, where each Xℓ represents a word. The order of
the words, and closeness of certain words in a sentence, convey semantic
meaning. RNNs are designed to accommodate and take advantage of the
sequential nature of such input objects, much like convolutional neural net-
works accommodate the spatial structure of image inputs. The output Y
can also be a sequence (such as in language translation), but often is a
scalar, like the binary sentiment label of a movie review document.
Figure 10.12 illustrates the structure of a very basic RNN with a sequence

X = {X1, X2, . . . , XL} as input, a simple output Y , and a hidden-layer
sequence {Aℓ}L1 = {A1, A2, . . . , AL}. Each Xℓ is a vector; in the document
example Xℓ could represent a one-hot encoding for the ℓth word based on
the language dictionary for the corpus (see the top panel in Figure 10.13
for a simple example). As the sequence is processed one vector Xℓ at a
time, the network updates the activations Aℓ in the hidden layer, taking
as input the vector Xℓ and the activation vector Aℓ−1 from the previous
step in the sequence. Each Aℓ feeds into the output layer and produces a
prediction Oℓ for Y . OL, the last of these, is the most relevant.
In detail, suppose each vector Xℓ of the input sequence has p components

XT
ℓ = (Xℓ1, Xℓ2, . . . , Xℓp), and the hidden layer consists of K units AT

ℓ =
(Aℓ1, Aℓ2, . . . , AℓK). As in Figure 10.4, we represent the collection of K ×
(p+1) shared weights wkj for the input layer by a matrix W, and similarly
U is a K × K matrix of the weights uks for the hidden-to-hidden layers,
and B is a K + 1 vector of weights βk for the output layer. Then

Aℓk = g
(
wk0 +

p∑

j=1

wkjXℓj +
K∑

s=1

uksAℓ−1,s

)
, (10.16)

and the output Oℓ is computed as

Oℓ = β0 +
K∑

k=1

βkAℓk (10.17)

for a quantitative response, or with an additional sigmoid activation func-
tion for a binary response, for example. Here g(·) is an activation function
such as ReLU. Notice that the same weights W, U and B are used as we
process each element in the sequence, i.e. they are not functions of ℓ. This
is a form of weight sharing used by RNNs, and similar to the use of filters

weight
sharingin convolutional neural networks (Section 10.3.1.) As we proceed from be-

ginning to end, the activations Aℓ accumulate a history of what has been
seen before, so that the learned context can be used for prediction.
For regression problems the loss function for an observation (X,Y ) is

(Y −OL)
2, (10.18)
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which only references the final output OL = β0+
∑K

k=1 βkALk. Thus O1, O2,
. . . , OL−1 are not used. When we fit the model, each element Xℓ of the input
sequence X contributes to OL via the chain (10.16), and hence contributes
indirectly to learning the shared parameters W, U and B via the loss
(10.18). With n input sequence/response pairs (xi, yi), the parameters are
found by minimizing the sum of squares

n∑

i=1

(yi−oiL)2 =
n∑

i=1

(
yi−

(
β0+

K∑

k=1

βkg
(
wk0+

p∑

j=1

wkjxiLj+
K∑

s=1

uksai,L−1,s

)))2
.

(10.19)
Here we use lowercase letters for the observed yi and vector sequences
xi = {xi1, xi2, . . . , xiL},16 as well as the derived activations.
Since the intermediate outputs Oℓ are not used, one may well ask why

they are there at all. First of all, they come for free, since they use the same
output weightsB needed to produce OL, and provide an evolving prediction
for the output. Furthermore, for some learning tasks the response is also a
sequence, and so the output sequence {O1, O2, . . . , OL} is explicitly needed.
When used at full strength, recurrent neural networks can be quite com-

plex. We illustrate their use in two simple applications. In the first, we
continue with the IMDb sentiment analysis of the previous section, where
we process the words in the reviews sequentially. In the second application,
we illustrate their use in a financial time series forecasting problem.

10.5.1 Sequential Models for Document Classification

Here we return to our classification task with the IMDb reviews. Our ap-
proach in Section 10.4 was to use the bag-of-words model. Here the plan
is to use instead the sequence of words occurring in a document to make
predictions about the label for the entire document.
We have, however, a dimensionality problem: each word in our document

is represented by a one-hot-encoded vector (dummy variable) with 10,000
elements (one per word in the dictionary)! An approach that has become
popular is to represent each word in a much lower-dimensional embedding

embedding
space. This means that rather than representing each word by a binary
vector with 9,999 zeros and a single one in some position, we will represent
it instead by a set of m real numbers, none of which are typically zero. Here
m is the embedding dimension, and can be in the low 100s, or even less.
This means (in our case) that we need a matrix E of dimension m×10,000,
where each column is indexed by one of the 10,000 words in our dictionary,
and the values in that column give the m coordinates for that word in the
embedding space.

16This is a sequence of vectors; each element xiℓ is a p-vector.
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FIGURE 10.13. Depiction of a sequence of 20 words representing a single doc-
ument: one-hot encoded using a dictionary of 16 words (top panel) and embedded
in an m-dimensional space with m = 5 (bottom panel).

Figure 10.13 illustrates the idea (with a dictionary of 16 rather than
10,000, and m = 5). Where does E come from? If we have a large corpus
of labeled documents, we can have the neural network learn E as part
of the optimization. In this case E is referred to as an embedding layer,

embedding
layerand a specialized E is learned for the task at hand. Otherwise we can

insert a precomputed matrix E in the embedding layer, a process known
as weight freezing. Two pretrained embeddings, word2vec and GloVe, are

weight
freezing

word2vec
GloVe

widely used.17 These are built from a very large corpus of documents by
a variant of principal components analysis (Section 12.2). The idea is that
the positions of words in the embedding space preserve semantic meaning;
e.g. synonyms should appear near each other.
So far, so good. Each document is now represented as a sequence of m-

vectors that represents the sequence of words. The next step is to limit
each document to the last L words. Documents that are shorter than L
get padded with zeros upfront. So now each document is represented by a
series consisting of L vectors X = {X1, X2, . . . , XL}, and each Xℓ in the
sequence has m components.
We now use the RNN structure in Figure 10.12. The training corpus

consists of n separate series (documents) of length L, each of which gets
processed sequentially from left to right. In the process, a parallel series of
hidden activation vectors Aℓ, ℓ = 1, . . . , L is created as in (10.16) for each
document. Aℓ feeds into the output layer to produce the evolving prediction

17word2vec is described in Mikolov, Chen, Corrado, and Dean (2013), available
at https://code.google.com/archive/p/word2vec. GloVe is described in Pennington,
Socher, and Manning (2014), available at https://nlp.stanford.edu/projects/glove.
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Oℓ. We use the final value OL to predict the response: the sentiment of the
review.
This is a simple RNN, and has relatively few parameters. If there are K

hidden units, the common weight matrix W has K × (m+ 1) parameters,
the matrix U has K×K parameters, and B has 2(K+1) for the two-class
logistic regression as in (10.15). These are used repeatedly as we process
the sequence X = {Xℓ}L1 from left to right, much like we use a single
convolution filter to process each patch in an image (Section 10.3.1). If the
embedding layer E is learned, that adds an additional m ×D parameters
(D = 10,000 here), and is by far the biggest cost.
We fit the RNN as described in Figure 10.12 and the accompaying text to

the IMDb data. The model had an embedding matrix E with m = 32 (which
was learned in training as opposed to precomputed), followed by a single
recurrent layer with K = 32 hidden units. The model was trained with
dropout regularization on the 25,000 reviews in the designated training
set, and achieved a disappointing 76% accuracy on the IMDb test data. A
network using the GloVe pretrained embedding matrix E performed slightly
worse.
For ease of exposition we have presented a very simple RNN. More elab-

orate versions use long term and short term memory (LSTM). Two tracks
of hidden-layer activations are maintained, so that when the activation Aℓ

is computed, it gets input from hidden units both further back in time,
and closer in time — a so-called LSTM RNN. With long sequences, this

LSTM RNN
overcomes the problem of early signals being washed out by the time they
get propagated through the chain to the final activation vector AL.
When we refit our model using the LSTM architecture for the hidden

layer, the performance improved to 87% on the IMDb test data. This is com-
parable with the 88% achieved by the bag-of-words model in Section 10.4.
We give details on fitting these models in Section 10.9.6.
Despite this added LSTM complexity, our RNN is still somewhat “entry

level”. We could probably achieve slightly better results by changing the
size of the model, changing the regularization, and including additional
hidden layers. However, LSTM models take a long time to train, which
makes exploring many architectures and parameter optimization tedious.
RNNs provide a rich framework for modeling data sequences, and they

continue to evolve. There have been many advances in the development
of RNNs — in architecture, data augmentation, and in the learning algo-
rithms. At the time of this writing (early 2020) the leading RNN configura-
tions report accuracy above 95% on the IMDb data. The details are beyond
the scope of this book.18

18An IMDb leaderboard can be found at https://paperswithcode.com/sota/

sentiment-analysis-on-imdb.
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10.5.2 Time Series Forecasting

Figure 10.14 shows historical trading statistics from the New York Stock
Exchange. Shown are three daily time series covering the period December
3, 1962 to December 31, 1986:19

• Log trading volume. This is the fraction of all outstanding shares that
are traded on that day, relative to a 100-day moving average of past
turnover, on the log scale.

• Dow Jones return. This is the difference between the log of the Dow
Jones Industrial Index on consecutive trading days.

• Log volatility. This is based on the absolute values of daily price
movements.

Predicting stock prices is a notoriously hard problem, but it turns out that
predicting trading volume based on recent past history is more manageable
(and is useful for planning trading strategies).
An observation here consists of the measurements (vt, rt, zt) on day t, in

this case the values for log volume, DJ return and log volatility. There are
a total of T = 6,051 such triples, each of which is plotted as a time series
in Figure 10.14. One feature that strikes us immediately is that the day-
to-day observations are not independent of each other. The series exhibit
auto-correlation — in this case values nearby in time tend to be similar

auto-
correlationto each other. This distinguishes time series from other data sets we have

encountered, in which observations can be assumed to be independent of
each other. To be clear, consider pairs of observations (vt, vt−ℓ), a lag of ℓ

lag
days apart. If we take all such pairs in the vt series and compute their corre-
lation coefficient, this gives the autocorrelation at lag ℓ. Figure 10.15 shows
the autocorrelation function for all lags up to 37, and we see considerable
correlation.
Another interesting characteristic of this forecasting problem is that the

response variable vt — log volume — is also a predictor! In particular, we
will use the past values of log volume to predict values in the future.

RNN forecaster

We wish to predict a value vt from past values vt−1, vt−2, . . ., and also to
make use of past values of the other series rt−1, rt−2, . . . and zt−1, zt−2, . . ..
Although our combined data is quite a long series with 6,051 trading
days, the structure of the problem is different from the previous document-
classification example.

• We only have one series of data, not 25,000.

19These data were assembled by LeBaron and Weigend (1998) IEEE Transactions on
Neural Networks, 9(1): 213–220.
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FIGURE 10.14. Historical trading statistics from the New York Stock Exchange.
Daily values of the normalized log trading volume, DJIA return, and log volatility
are shown for a 24-year period from 1962–1986. We wish to predict trading volume
on any day, given the history on all earlier days. To the left of the red bar (January
2, 1980) is training data, and to the right test data.

• We have an entire series of targets vt, and the inputs include past
values of this series.

How do we represent this problem in terms of the structure displayed in
Figure 10.12? The idea is to extract many short mini-series of input se-
quences X = {X1, X2, . . . , XL} with a predefined length L (called the lag

lag
in this context), and a corresponding target Y . They have the form

X1 =

⎛

⎝
vt−L

rt−L

zt−L

⎞

⎠ , X2 =

⎛

⎝
vt−L+1

rt−L+1

zt−L+1

⎞

⎠ , · · · , XL =

⎛

⎝
vt−1

rt−1

zt−1

⎞

⎠ , and Y = vt.

(10.20)
So here the target Y is the value of log volume vt at a single timepoint t,
and the input sequence X is the series of 3-vectors {Xℓ}L1 each consisting
of the three measurements log volume, DJ return and log volatility from
day t− L, t− L+ 1, up to t− 1. Each value of t makes a separate (X,Y )
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FIGURE 10.15. The autocorrelation function for log volume. We see that
nearby values are fairly strongly correlated, with correlations above 0.2 as far
as 20 days apart.
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FIGURE 10.16. RNN forecast of log volume on the NYSE test data. The black
lines are the true volumes, and the superimposed orange the forecasts. The fore-
casted series accounts for 42% of the variance of log volume.

pair, for t running from L+ 1 to T . For the NYSE data we will use the past
five trading days to predict the next day’s trading volume. Hence, we use
L = 5. Since T = 6,051, we can create 6,046 such (X,Y ) pairs. Clearly L
is a parameter that should be chosen with care, perhaps using validation
data.
We fit this model with K = 12 hidden units using the 4,281 training

sequences derived from the data before January 2, 1980 (see Figure 10.14),
and then used it to forecast the 1,770 values of log volume after this date.
We achieve an R2 = 0.42 on the test data. Details are given in Sec-
tion 10.9.6. As a straw man,20 using yesterday’s value for log volume as
the prediction for today has R2 = 0.18. Figure 10.16 shows the forecast
results. We have plotted the observed values of the daily log volume for the

20A straw man here refers to a simple and sensible prediction that can be used as a
baseline for comparison.
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test period 1980–1986 in black, and superimposed the predicted series in
orange. The correspondence seems rather good.
In forecasting the value of log volume in the test period, we have to use

the test data itself in forming the input sequences X. This may feel like
cheating, but in fact it is not; we are always using past data to predict the
future.

Autoregression

The RNN we just fit has much in common with a traditional autoregression
auto-
regression(AR) linear model, which we present now for comparison. We first consider

the response sequence vt alone, and construct a response vector y and a
matrix M of predictors for least squares regression as follows:

y =

⎡

⎢⎢⎢⎢⎢⎣

vL+1

vL+2

vL+3
...
vT

⎤

⎥⎥⎥⎥⎥⎦
M =

⎡

⎢⎢⎢⎢⎢⎣

1 vL vL−1 · · · v1
1 vL+1 vL · · · v2
1 vL+2 vL+1 · · · v3
...

...
...

. . .
...

1 vT−1 vT−2 · · · vT−L

⎤

⎥⎥⎥⎥⎥⎦
. (10.21)

M and y each have T − L rows, one per observation. We see that the
predictors for any given response vt on day t are the previous L values
of the same series. Fitting a regression of y on M amounts to fitting the
model

v̂t = β̂0 + β̂1vt−1 + β̂2vt−2 + · · ·+ β̂Lvt−L, (10.22)

and is called an order-L autoregressive model, or simply AR(L). For the
NYSE data we can include lagged versions of DJ return and log volatility,
rt and zt, in the predictor matrix M, resulting in 3L+ 1 columns. An AR
model with L = 5 achieves a test R2 of 0.41, slightly inferior to the 0.42
achieved by the RNN.
Of course the RNN and AR models are very similar. They both use

the same response Y and input sequences X of length L = 5 and dimen-
sion p = 3 in this case. The RNN processes this sequence from left to
right with the same weights W (for the input layer), while the AR model
simply treats all L elements of the sequence equally as a vector of L × p
predictors — a process called flattening in the neural network literature.

flattening
Of course the RNN also includes the hidden layer activations Aℓ which
transfer information along the sequence, and introduces additional nonlin-
earity. From (10.19) with K = 12 hidden units, we see that the RNN has
13+12× (1+3+12) = 205 parameters, compared to the 16 for the AR(5)
model.
An obvious extension of the AR model is to use the set of lagged predic-

tors as the input vector to an ordinary feedforward neural network (10.1),
and hence add more flexibility. This achieved a test R2 = 0.42, slightly
better than the linear AR, and the same as the RNN.
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All the models can be improved by including the variable day of week

corresponding to the day t of the target vt (which can be learned from the
calendar dates supplied with the data); trading volume is often higher on
Mondays and Fridays. Since there are five trading days, this one-hot en-
codes to five binary variables. The performance of the AR model improved
to R2 = 0.46 as did the RNN, and the nonlinear AR model improved to
R2 = 0.47.
We used the most simple version of the RNN in our examples here.

Additional experiments with the LSTM extension of the RNN yielded small
improvements, typically of up to 1% in R2 in these examples.
We give details of how we fit all three models in Section 10.9.6.

10.5.3 Summary of RNNs

We have illustrated RNNs through two simple use cases, and have only
scratched the surface.
There are many variations and enhancements of the simple RNN we

used for sequence modeling. One approach we did not discuss uses a one-
dimensional convolutional neural network, treating the sequence of vectors
(say words, as represented in the embedding space) as an image. The con-
volution filter slides along the sequence in a one-dimensional fashion, with
the potential to learn particular phrases or short subsequences relevant to
the learning task.
One can also have additional hidden layers in an RNN. For example,

with two hidden layers, the sequence Aℓ is treated as an input sequence to
the next hidden layer in an obvious fashion.
The RNN we used scanned the document from beginning to end; alter-

native bidirectional RNNs scan the sequences in both directions.
bidirectional

In language translation the target is also a sequence of words, in a
language different from that of the input sequence. Both the input se-
quence and the target sequence are represented by a structure similar to
Figure 10.12, and they share the hidden units. In this so-called Seq2Seq

Seq2Seq
learning, the hidden units are thought to capture the semantic meaning
of the sentences. Some of the big breakthroughs in language modeling and
translation resulted from the relatively recent improvements in such RNNs.
Algorithms used to fit RNNs can be complex and computationally costly.

Fortunately, good software protects users somewhat from these complexi-
ties, and makes specifying and fitting these models relatively painless. Many
of the models that we enjoy in daily life (like Google Translate) use state-
of-the-art architectures developed by teams of highly skilled engineers, and
have been trained using massive computational and data resources.
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10.6 When to Use Deep Learning

The performance of deep learning in this chapter has been rather impres-
sive. It nailed the digit classification problem, and deep CNNs have really
revolutionized image classification. We see daily reports of new success sto-
ries for deep learning. Many of these are related to image classification
tasks, such as machine diagnosis of mammograms or digital X-ray images,
ophthalmology eye scans, annotations of MRI scans, and so on. Likewise
there are numerous successes of RNNs in speech and language translation,
forecasting, and document modeling. The question that then begs an an-
swer is: should we discard all our older tools, and use deep learning on every
problem with data? To address this question, we revisit our Hitters dataset
from Chapter 6.
This is a regression problem, where the goal is to predict the Salary of

a baseball player in 1987 using his performance statistics from 1986. After
removing players with missing responses, we are left with 263 players and
19 variables. We randomly split the data into a training set of 176 players
(two thirds), and a test set of 87 players (one third). We used three methods
for fitting a regression model to these data.

• A linear model was used to fit the training data, and make predictions
on the test data. The model has 20 parameters.

• The same linear model was fit with lasso regularization. The tuning
parameter was selected by 10-fold cross-validation on the training
data. It selected a model with 12 variables having nonzero coefficients.

• A neural network with one hidden layer consisting of 64 ReLU units
was fit to the data. This model has 1,409 parameters.21

Table 10.2 compares the results. We see similar performance for all three
models. We report the mean absolute error on the test data, as well as
the test R2 for each method, which are all respectable (see Exercise 5).
We spent a fair bit of time fiddling with the configuration parameters of
the neural network to achieve these results. It is possible that if we were to
spend more time, and got the form and amount of regularization just right,
that we might be able to match or even outperform linear regression and
the lasso. But with great ease we obtained linear models that work well.
Linear models are much easier to present and understand than the neural
network, which is essentially a black box. The lasso selected 12 of the 19
variables in making its prediction. So in cases like this we are much better
off following the Occam’s razor principle: when faced with several methods

Occam’s
razor

21The model was fit by stochastic gradient descent with a batch size of 32 for 1,000
epochs, and 10% dropout regularization. The test error performance flattened out and
started to slowly increase after 1,000 epochs. These fitting details are discussed in Sec-
tion 10.7.
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Model # Parameters Mean Abs. Error Test Set R2

Linear Regression 20 254.7 0.56
Lasso 12 252.3 0.51

Neural Network 1409 257.4 0.54

TABLE 10.2. Prediction results on the Hitters test data for linear models fit
by ordinary least squares and lasso, compared to a neural network fit by stochastic
gradient descent with dropout regularization.

Coefficient Std. error t-statistic p-value
Intercept -226.67 86.26 -2.63 0.0103
Hits 3.06 1.02 3.00 0.0036
Walks 0.181 2.04 0.09 0.9294
CRuns 0.859 0.12 7.09 < 0.0001
PutOuts 0.465 0.13 3.60 0.0005

TABLE 10.3. Least squares coefficient estimates associated with the regres-
sion of Salary on four variables chosen by lasso on the Hitters data set. This
model achieved the best performance on the test data, with a mean absolute error
of 224.8. The results reported here were obtained from a regression on the test
data, which was not used in fitting the lasso model.

that give roughly equivalent performance, pick the simplest.
After a bit more exploration with the lasso model, we identified an even

simpler model with four variables. We then refit the linear model with these
four variables to the training data (the so-called relaxed lasso), and achieved
a test mean absolute error of 224.8, the overall winner! It is tempting to
present the summary table from this fit, so we can see coefficients and p-
values; however, since the model was selected on the training data, there
would be selection bias. Instead, we refit the model on the test data, which
was not used in the selection. Table 10.3 shows the results.
We have a number of very powerful tools at our disposal, including neu-

ral networks, random forests and boosting, support vector machines and
generalized additive models, to name a few. And then we have linear mod-
els, and simple variants of these. When faced with new data modeling and
prediction problems, its tempting to always go for the trendy new methods.
Often they give extremely impressive results, especially when the datasets
are very large and can support the fitting of high-dimensional nonlinear
models. However, if we can produce models with the simpler tools that
perform as well, they are likely to be easier to fit and understand, and po-
tentially less fragile than the more complex approaches. Wherever possible,
it makes sense to try the simpler models as well, and then make a choice
based on the performance/complexity tradeoff.
Typically we expect deep learning to be an attractive choice when the

sample size of the training set is extremely large, and when interpretability
of the model is not a high priority.
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10.7 Fitting a Neural Network

Fitting neural networks is somewhat complex, and we give a briefoverview
here. The ideas generalize to much more complex networks. Readers who
find this material challenging can safely skip it. Fortunately, as we see in
the lab at the end of the chapter, good software is available to fit neural
network models in a relatively automated way, without worrying about the
technical details of the model-fitting procedure.
We start with the simple network depicted in Figure 10.1 in Section 10.1.

In model (10.1) the parameters are β = (β0,β1, . . . ,βK), as well as each of
the wk = (wk0, wk1, . . . , wkp), k = 1, . . . ,K.Given observations (xi, yi), i =
1, . . . , n, we could fit the model by solving a nonlinear least squares problem

minimize
{wk}K

1 , β

1

2

n∑

i=1

(yi − f(xi))
2, (10.23)

where

f(xi) = β0 +
K∑

k=1

βkg
(
wk0 +

p∑

j=1

wkjxij

)
. (10.24)

The objective in (10.23) looks simple enough, but because of the nested
arrangement of the parameters and the symmetry of the hidden units, it is
not straightforward to minimize. The problem is nonconvex in the param-
eters, and hence there are multiple solutions. As an example, Figure 10.17
shows a simple nonconvex function of a single variable θ; there are two
solutions: one is a local minimum and the other is a global minimum. Fur-

local
minimum
global
minimum

thermore, (10.1) is the very simplest of neural networks; in this chapter we
have presented much more complex ones where these problems are com-
pounded. To overcome some of these issues and to protect from overfitting,
two general strategies are employed when fitting neural networks.

• Slow Learning: the model is fit in a somewhat slow iterative fash-
ion, using gradient descent. The fitting process is then stopped when

gradient
descentoverfitting is detected.

• Regularization: penalties are imposed on the parameters, usually lasso
or ridge as discussed in Section 6.2.

Suppose we represent all the parameters in one long vector θ. Then we
can rewrite the objective in (10.23) as

R(θ) =
1

2

n∑

i=1

(yi − fθ(xi))
2, (10.25)

where we make explicit the dependence of f on the parameters. The idea
of gradient descent is very simple.
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FIGURE 10.17. Illustration of gradient descent for one-dimensional θ. The
objective function R(θ) is not convex, and has two minima, one at θ = −0.46
(local), the other at θ = 1.02 (global). Starting at some value θ0 (typically ran-
domly chosen), each step in θ moves downhill — against the gradient — until it
cannot go down any further. Here gradient descent reached the global minimum
in 7 steps.

1. Start with a guess θ0 for all the parameters in θ, and set t = 0.

2. Iterate until the objective (10.25) fails to decrease:

(a) Find a vector δ that reflects a small change in θ, such that θt+1 =
θt + δ reduces the objective; i.e. such that R(θt+1) < R(θt).

(b) Set t← t+ 1.

One can visualize (Figure 10.17) standing in a mountainous terrain, and
the goal is to get to the bottom through a series of steps. As long as each
step goes downhill, we must eventually get to the bottom. In this case we
were lucky, because with our starting guess θ0 we end up at the global
minimum. In general we can hope to end up at a (good) local minimum.

10.7.1 Backpropagation

How do we find the directions to move θ so as to decrease the objective
R(θ) in (10.25)? The gradient of R(θ), evaluated at some current value

gradient
θ = θm, is the vector of partial derivatives at that point:

∇R(θm) =
∂R(θ)

∂θ

∣∣∣
θ=θm

. (10.26)

The subscript θ = θm means that after computing the vector of derivatives,
we evaluate it at the current guess, θm. This gives the direction in θ-space
in which R(θ) increases most rapidly. The idea of gradient descent is to
move θ a little in the opposite direction (since we wish to go downhill):

θm+1 ← θm − ρ∇R(θm). (10.27)
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For a small enough value of the learning rate ρ, this step will decrease the
learning rate

objective R(θ); i.e. R(θm+1) ≤ R(θm). If the gradient vector is zero, then
we may have arrived at a minimum of the objective.
How complicated is the calculation (10.26)? It turns out that it is quite

simple here, and remains simple even for much more complex networks,
because of the chain rule of differentiation.

chain rule
Since R(θ) =

∑n
i=1 Ri(θ) =

1
2

∑n
i=1(yi − fθ(xi))2 is a sum, its gradient

is also a sum over the n observations, so we will just examine one of these
terms,

Ri(θ) =
1

2

(
yi − β0 −

K∑

k=1

βkg
(
wk0 +

p∑

j=1

wkjxij

))2
. (10.28)

To simplify the expressions to follow, we write zik = wk0 +
∑p

j=1 wkjxij .
First we take the derivative with respect to βk:

∂Ri(θ)

∂βk
=

∂Ri(θ)

∂fθ(xi)
· ∂fθ(xi)

∂βk

= −(yi − fθ(xi)) · g(zik). (10.29)

And now we take the derivative with respect to wkj :

∂Ri(θ)

∂wkj
=

∂Ri(θ)

∂fθ(xi)
· ∂fθ(xi)

∂g(zik)
· ∂g(zik)

∂zik
· ∂zik
∂wkj

= −(yi − fθ(xi)) · βk · g′(zik) · xij . (10.30)

Notice that both these expressions contain the residual yi − fθ(xi). In
(10.29) we see that a fraction of that residual gets attributed to each of
the hidden units according to the value of g(zik). Then in (10.30) we see
a similar attribution to input j via hidden unit k. So the act of differen-
tiation assigns a fraction of the residual to each of the parameters via the
chain rule — a process known as backpropagation in the neural network

backprop-
agationliterature. Although these calculations are straightforward, it takes careful

bookkeeping to keep track of all the pieces.

10.7.2 Regularization and Stochastic Gradient Descent

Gradient descent usually takes many steps to reach a local minimum. In
practice, there are a number of approaches for accelerating the process.
Also, when n is large, instead of summing (10.29)–(10.30) over all n ob-
servations, we can sample a small fraction or minibatch of them each time

minibatch
we compute a gradient step. This process is known as stochastic gradient
descent (SGD) and is the state of the art for learning deep neural networks.

stochastic
gradient
descent

Fortunately, there is very good software for setting up deep learning mod-
els, and for fitting them to data, so most of the technicalities are hidden
from the user.
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FIGURE 10.18. Evolution of training and validation errors for the MNIST neural
network depicted in Figure 10.4, as a function of training epochs. The objective
refers to the log-likelihood (10.14).

We now turn to the multilayer network (Figure 10.4) used in the digit
recognition problem. The network has over 235,000 weights, which is around
four times the number of training examples. Regularization is essential here
to avoid overfitting. The first row in Table 10.1 uses ridge regularization on
the weights. This is achieved by augmenting the objective function (10.14)
with a penalty term:

R(θ;λ) = −
n∑

i=1

9∑

m=0

yim log(fm(xi)) + λ
∑

j

θ2j . (10.31)

The parameter λ is often preset at a small value, or else it is found using the
validation-set approach of Section 5.3.1. We can also use different values of
λ for the groups of weights from different layers; in this case W1 and W2

were penalized, while the relatively few weights B of the output layer were
not penalized at all. Lasso regularization is also popular as an additional
form or regularization, or as an alternative to ridge.
Figure 10.18 shows some metrics that evolve during the training of the

network on the MNIST data. It turns out that SGD naturally enforces its
own form of approximately quadratic regularization.22 Here the minibatch
size was 128 observations per gradient update. The term epochs labeling the

epochs
horizontal axis in Figure 10.18 counts the number of times an equivalent of
the full training set has been processed. For this network, 20% of the 60,000
training observations were used as a validation set in order to determine
when training should stop. So in fact 48,000 observations were used for

22This and other properties of SGD for deep learning are the subject of much research
in the machine learning literature at the time of writing.
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FIGURE 10.19. Dropout Learning. Left: a fully connected network. Right: net-
work with dropout in the input and hidden layer. The nodes in grey are selected
at random, and ignored in an instance of training.

training, and hence there are 48,000/128 ≈ 375 minibatch gradient updates
per epoch. We see that the value of the validation objective actually starts
to increase by 30 epochs, so early stopping can also be used as an additional

early
stoppingform of regularization.

10.7.3 Dropout Learning

The second row in Table 10.1 is labeled dropout. This is a relatively new
dropout

and efficient form of regularization, similar in some respects to ridge reg-
ularization. Inspired by random forests (Section 8.2), the idea is to ran-
domly remove a fraction φ of the units in a layer when fitting the model.
Figure 10.19 illustrates this. This is done separately each time a training
observation is processed. The surviving units stand in for those missing,
and their weights are scaled up by a factor of 1/(1 − φ) to compensate.
This prevents nodes from becoming over-specialized, and can be seen as
a form of regularization. In practice dropout is achieved by randomly set-
ting the activations for the “dropped out” units to zero, while keeping the
architecture intact.

10.7.4 Network Tuning

The network in Figure 10.4 is considered to be relatively straightforward;
it nevertheless requires a number of choices that all have an effect on the
performance:

• The number of hidden layers, and the number of units per layer. Mod-
ern thinking is that the number of units per hidden layer can be large,
and overfitting can be controlled via the various forms of regulariza-
tion.
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• Regularization tuning parameters. These include the dropout rate φ
and the strength λ of lasso and ridge regularization, and are typically
set separately at each layer.

• Details of stochastic gradient descent. These includes the batch size,
the number of epochs, and if used, details of data augmentation (Sec-
tion 10.3.4.)

Choices such as these can make a difference. In preparing this MNIST exam-
ple, we achieved a respectable 1.8% misclassification error after some trial
and error. Finer tuning and training of a similar network can get under
1% error on these data, but the tinkering process can be tedious, and can
result in overfitting if done carelessly.

10.8 Interpolation and Double Descent

Throughout this book, we have repeatedly discussed the bias-variance trade-
off, first presented in Section 2.2.2. This trade-off indicates that statistical
learning methods tend to perform the best, in terms of test-set error, for an
intermediate level of model complexity. In particular, if we plot “flexibility”
on the x-axis and error on the y-axis, then we generally expect to see that
test error has a U-shape, whereas training error decreases monotonically.
Two “typical” examples of this behavior can be seen in the right-hand
panel of Figure 2.9 on page 31, and in Figure 2.17 on page 42. One implica-
tion of the bias-variance trade-off is that it is generally not a good idea to
interpolate the training data — that is, to get zero training error — since

interpolate
that will often result in very high test error.
However, it turns out that in certain specific settings it can be possible for

a statistical learning method that interpolates the training data to perform
well — or at least, better than a slightly less complex model that does not
quite interpolate the data. This phenomenon is known as double descent,
and is displayed in Figure 10.20. “Double descent” gets its name from the
fact that the test error has a U-shape before the interpolation threshold is
reached, and then it descends again (for a while, at least) as an increasingly
flexible model is fit.
We now describe the set-up that resulted in Figure 10.20. We simulated

n = 20 observations from the model

Y = sin(X) + ϵ,

where X ∼ U [−5, 5] (uniform distribution), and ϵ ∼ N(0,σ2) with σ = 0.3.
We then fit a natural spline to the data, as described in Section 7.4, with d
degrees of freedom.23 Recall from Section 7.4 that fitting a natural spline

23This implies the choice of d knots, here chosen at d equi-probability quantiles of the
training data. When d > n, the quantiles are found by interpolation.
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FIGURE 10.20. Double descent phenomenon, illustrated using error plots for
a one-dimensional natural spline example. The horizontal axis refers to the num-
ber of spline basis functions on the log scale. The training error hits zero when
the degrees of freedom coincides with the sample size n = 20, the “interpolation
threshold”, and remains zero thereafter. The test error increases dramatically at
this threshold, but then descends again to a reasonable value before finally increas-
ing again.

with d degrees of freedom amounts to fitting a least-squares regression
of the response onto a set of d basis functions. The upper-left panel of
Figure 10.21 shows the data, the true function f(X), and f̂8(X), the fitted
natural spline with d = 8 degrees of freedom.
Next, we fit a natural spline with d = 20 degrees of freedom. Since n = 20,

this means that n = d, and we have zero training error; in other words, we
have interpolated the training data! We can see from the top-right panel of
Figure 10.21 that f̂20(X) makes wild excursions, and hence the test error
will be large.
We now continue to fit natural splines to the data, with increasing values

of d. For d > 20, the least squares regression of Y onto d basis functions
is not unique: there are an infinite number of least squares coefficient es-
timates that achieve zero error. To select among them, we choose the one
with the smallest sum of squared coefficients,

∑d
j=1 β̂

2
j . This is known as

the minimum-norm solution.
The two lower panels of Figure 10.21 show the minimum-norm natural

spline fits with d = 42 and d = 80 degrees of freedom. Incredibly, f̂42(X)
is quite a bit less less wild than f̂20(X), even though it makes use of more
degrees of freedom. And f̂80(X) is not much different. How can this be?
Essentially, f̂20(X) is very wild because there is just a single way to inter-
polate n = 20 observations using d = 20 basis functions, and that single
way results in a somewhat extreme fitted function. By contrast, there are an



10.8 Interpolation and Double Descent 441

−4 −2 0 2 4

−3
−2

−1
0

1
2

3

8 Degrees of Freedom

seq(−5, 5, len = 1000)

−4 −2 0 2 4

−3
−2

−1
0

1
2

3

20 Degrees of Freedom

seq(−5, 5, len = 1000)

f(
se

q(
−5

, 5
, l

en
 =

 1
00

0)
)

−4 −2 0 2 4

−3
−2

−1
0

1
2

3

42 Degrees of Freedom

−4 −2 0 2 4

−3
−2

−1
0

1
2

3

80 Degrees of Freedom

f(
se

q(
−5

, 5
, l

en
 =

 1
00

0)
)

FIGURE 10.21. Fitted functions f̂d(X) (orange), true function f(X) (black)
and the observed 20 training data points. A different value of d (degrees of free-
dom) is used in each panel. For d ≥ 20 the orange curves all interpolate the
training points, and hence the training error is zero.

infinite number of ways to interpolate n = 20 observations using d = 42 or
d = 80 basis functions, and the smoothest of them — that is, the minimum
norm solution — is much less wild than f̂20(X)!
In Figure 10.20, we display the training error and test error associated

with f̂d(X), for a range of values of the degrees of freedom d. We see that
the training error drops to zero once d = 20 and beyond; i.e. once the
interpolation threshold is reached. By contrast, the test error shows a U -
shape for d ≤ 20, grows extremely large around d = 20, and then shows a
second region of descent for d > 20. For this example the signal-to-noise
ratio — Var(f(X))/σ2 — is 5.9, which is quite high (the data points are
close to the true curve). So an estimate that interpolates the data and does
not wander too far inbetween the observed data points will likely do well.
In Figures 10.20 and 10.21, we have illustrated the double descent phe-

nomenon in a simple one-dimensional setting using natural splines. How-
ever, it turns out that the same phenomenon can arise for deep learning.
Basically, when we fit neural networks with a huge number of parameters,
we are sometimes able to get good results with zero training error. This is
particularly true in problems with high signal-to-noise ratio, such as natural
image recognition and language translation, for example. This is because
the techniques used to fit neural networks, including stochastic gradient
descent, naturally lend themselves to selecting a “smooth” interpolating
model that has good test-set performance on these kinds of problems.
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Some points are worth emphasizing:

• The double-descent phenomenon does not contradict the bias-variance
trade-off, as presented in Section 2.2.2. Rather, the double-descent
curve seen in the right-hand side of Figure 10.20 is a consequence of
the fact that the x-axis displays the number of spline basis functions
used, which does not properly capture the true “flexibility” of models
that interpolate the training data. Stated another way, in this exam-
ple, the minimum-norm natural spline with d = 42 has lower variance
than the natural spline with d = 20.

• Most of the statistical learning methods seen in this book do not exhibit
double descent. For instance, regularization approaches typically do
not interpolate the training data, and thus double descent does not
occur. This is not a drawback of regularized methods: they can give
great results without interpolating the data !

In particular, in the examples here, if we had fit the natural splines
using ridge regression with an appropriately-chosen penalty rather
than least squares, then we would not have seen double descent, and
in fact would have obtained better test error results.

• In Chapter 9, we saw that maximal margin classifiers and SVMs that
have zero training error nonetheless often achieve very good test error.
This is in part because those methods seek smooth minimum norm
solutions. This is similar to the fact that the minimum-norm natural
spline can give good results with zero training error.

• The double-descent phenomenon has been used by the machine learn-
ing community to explain the successful practice of using an over-
parametrized neural network (many layers, and many hidden units),
and then fitting all the way to zero training error. However, fitting
to zero error is not always optimal, and whether it is advisable de-
pends on the signal-to-noise ratio. For instance, we may use ridge
regularization to avoid overfitting a neural network, as in (10.31). In
this case, provided that we use an appropriate choice for the tuning
parameter λ, we will never interpolate the training data, and thus
will not see the double descent phenomenon. Nonetheless we can get
very good test-set performance, likely much better than we would
have achieved had we interpolated the training data. Early stopping
during stochastic gradient descent can also serve as a form of regular-
ization that prevents us from interpolating the training data, while
still getting very good results on test data.

To summarize: though double descent can sometimes occur in neural net-
works, we typically do not want to rely on this behavior. Moreover, it is im-
portant to remember that the bias-variance trade-off always holds (though
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it is possible that test error as a function of flexibility may not exhibit a U-
shape, depending on how we have parametrized the notion of “flexibility”
on the x-axis).

10.9 Lab: Deep Learning

In this section, we show how to fit the examples discussed in the text. We
use the keras package, which interfaces to the tensorflow package which in
turn links to efficient python code. This code is impressively fast, and the
package is well-structured. A good companion is the text Deep Learning
with R24, and most of our code is adapted from there.
Getting keras up and running on your computer can be a challenge. The

book website www.statlearning.com gives step-by-step instructions on
how to achieve this.25 Guidance can also be found at keras.rstudio.com.

10.9.1 A Single Layer Network on the Hitters Data

We start by fitting the models in Section 10.6. We set up the data, and
separate out a training and test set.

> library(ISLR2)

> Gitters <- na.omit(Hitters)

> n <- nrow(Gitters)

> set.seed (13)

> ntest <- trunc(n / 3)

> testid <- sample (1:n, ntest)

The linear model should be familiar, but we present it anyway.

> lfit <- lm(Salary ∼ ., data = Gitters[-testid , ])

> lpred <- predict(lfit , Gitters[testid , ])

> with(Gitters[testid , ], mean(abs(lpred - Salary)))

[1] 254.6687

Notice the use of the with() command: the first argument is a dataframe,
with()

and the second an expression that can refer to elements of the dataframe
by name. In this instance the dataframe corresponds to the test data and
the expression computes the mean absolute prediction error on this data.
Next we fit the lasso using glmnet. Since this package does not use for-

mulas, we create x and y first.

> x <- scale(model.matrix(Salary ∼ . - 1, data = Gitters))

> y <- Gitters$Salary

24F. Chollet and J.J. Allaire, Deep Learning with R (2018), Manning Publications.
25Many thanks to Balasubramanian Narasimhan for preparing the keras installation

instructions.
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The first line makes a call to model.matrix(), which produces the same
matrix that was used by lm() (the -1 omits the intercept). This function
automatically converts factors to dummy variables. The scale() function
standardizes the matrix so each column has mean zero and variance one.

> library(glmnet)

> cvfit <- cv.glmnet(x[-testid , ], y[-testid],

type.measure = "mae")

> cpred <- predict(cvfit , x[testid , ], s = "lambda.min")

> mean(abs(y[testid] - cpred))

[1] 252.2994

To fit the neural network, we first set up a model structure that describes
the network.

> library(keras)

> modnn <- keras_model_sequential () %>%

+ layer_dense(units = 50, activation = "relu",

input_shape = ncol(x)) %>%

+ layer_dropout(rate = 0.4) %>%

+ layer_dense(units = 1)

We have created a vanilla model object called modnn, and have added de-
tails about the successive layers in a sequential manner, using the function
keras model sequential(). The pipe operator %>% passes the previous term

keras model

sequential

pipe

as the first argument to the next function, and returns the result. It allows
us to specify the layers of a neural network in a readable form.
We illustrate the use of the pipe operator on a simple example. Earlier,

we created x using the command

> x <- scale(model.matrix(Salary ∼ . - 1, data = Gitters))

We first make a matrix, and then we center each of the variables. Compound
expressions like this can be difficult to parse. We could have obtained the
same result using the pipe operator:

> x <- model.matrix(Salary ∼ . - 1, data = Gitters) %>% scale ()

Using the pipe operator makes it easier to follow the sequence of operations.
We now return to our neural network. The object modnn has a single hid-

den layer with 50 hidden units, and a ReLU activation function. It then has
a dropout layer, in which a random 40% of the 50 activations from the pre-
vious layer are set to zero during each iteration of the stochastic gradient
descent algorithm. Finally, the output layer has just one unit with no ac-
tivation function, indicating that the model provides a single quantitative
output.
Next we add details to modnn that control the fitting algorithm. Here we

have simply followed the examples given in the Keras book. We minimize
squared-error loss as in (10.23). The algorithm tracks the mean absolute
error on the training data, and on validation data if it is supplied.

> modnn %>% compile(loss = "mse",
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optimizer = optimizer_rmsprop (),

metrics = list("mean_absolute_error")

)

In the previous line, the pipe operator passes modnn as the first argument
to compile(). The compile() function does not actually change the R object

compile()
modnn, but it does communicate these specifications to the corresponding
python instance of this model that has been created along the way.
Now we fit the model. We supply the training data and two fitting pa-

rameters, epochs and batch size. Using 32 for the latter means that at each
step of SGD, the algorithm randomly selects 32 training observations for
the computation of the gradient. Recall from Sections 10.4 and 10.7 that
an epoch amounts to the number of SGD steps required to process n obser-
vations. Since the training set has n = 176, an epoch is 176/32 = 5.5 SGD
steps. The fit() function has an argument validation data; these data are
not used in the fitting, but can be used to track the progress of the model
(in this case reporting the mean absolute error). Here we actually supply
the test data so we can see the mean absolute error of both the training
data and test data as the epochs proceed. To see more options for fitting,
use ?fit.keras.engine.training.Model.

> history <- modnn %>% fit(

x[-testid , ], y[-testid], epochs = 1500, batch_size = 32,

validation_data = list(x[testid , ], y[testid ])

)

We can plot the history to display the mean absolute error for the training
and test data. For the best aesthetics, install the ggplot2 package before
calling the plot() function. If you have not installed ggplot2, then the code
below will still run, but the plot will be less attractive.

> plot(history)

It is worth noting that if you run the fit() command a second time in the
same R session, then the fitting process will pick up where it left off. Try
re-running the fit() command, and then the plot() command, to see!
Finally, we predict from the final model, and evaluate its performance

on the test data. Due to the use of SGD, the results vary slightly with each
fit. Unfortunately the set.seed() function does not ensure identical results
(since the fitting is done in python), so your results will differ slightly.

> npred <- predict(modnn , x[testid , ])

> mean(abs(y[testid] - npred))

[1] 257.43

10.9.2 A Multilayer Network on the MNIST Digit Data

The keras package comes with a number of example datasets, includ-
ing the MNIST digit data. Our first step is to load the MNIST data. The
dataset mnist() function is provided for this purpose.

dataset mnist()
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> mnist <- dataset_mnist ()

> x_train <- mnist$train$x

> g_train <- mnist$train$y

> x_test <- mnist$test$x

> g_test <- mnist$test$y

> dim(x_train)

[1] 60000 28 28

> dim(x_test)

[1] 10000 28 28

There are 60,000 images in the training data and 10,000 in the test data.
The images are 28×28, and stored as a three-dimensional array, so we need
to reshape them into a matrix. Also, we need to “one-hot” encode the class
label. Luckily keras has a lot of built-in functions that do this for us.

> x_train <- array_reshape(x_train , c(nrow(x_train), 784))

> x_test <- array_reshape(x_test , c(nrow(x_test), 784))

> y_train <- to_categorical(g_train , 10)

> y_test <- to_categorical(g_test , 10)

Neural networks are somewhat sensitive to the scale of the inputs. For
example, ridge and lasso regularization are affected by scaling. Here the
inputs are eight-bit26 grayscale values between 0 and 255, so we rescale to
the unit interval.

> x_train <- x_train / 255

> x_test <- x_test / 255

Now we are ready to fit our neural network.

> modelnn <- keras_model_sequential ()

> modelnn %>%

+ layer_dense(units = 256, activation = "relu",

input_shape = c(784)) %>%

+ layer_dropout(rate = 0.4) %>%

+ layer_dense(units = 128, activation = "relu") %>%

+ layer_dropout(rate = 0.3) %>%

+ layer_dense(units = 10, activation = "softmax")

The first layer goes from 28 × 28 = 784 input units to a hidden layer of
256 units, which uses the ReLU activation function. This is specified by a
call to layer dense(), which takes as input a modelnn object, and returns

layer dense()
a modified modelnn object. This is then piped through layer dropout() to

layer dropout()
perform dropout regularization. The second hidden layer comes next, with
128 hidden units, followed by a dropout layer. The final layer is the out-
put layer, with activation "softmax" (10.13) for the 10-class classification
problem, which defines the map from the second hidden layer to class prob-
abilities. Finally, we use summary() to summarize the model, and to make
sure we got it all right.

26Eight bits means 28, which equals 256. Since the convention is to start at 0, the
possible values range from 0 to 255.
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> summary(modelnn)

________________________________________________________________

Layer (type) Output Shape Param #

================================================================

dense (Dense) (None , 256) 200960

________________________________________________________________

dropout (Dropout) (None , 256) 0

________________________________________________________________

dense_1 (Dense) (None , 128) 32896

________________________________________________________________

dropout _1 (Dropout) (None , 128) 0

________________________________________________________________

dense_2 (Dense) (None , 10) 1290

================================================================

Total params: 235 ,146

Trainable params: 235 ,146

Non -trainable params: 0

The parameters for each layer include a bias term, which results in a
parameter count of 235,146. For example, the first hidden layer involves
(784 + 1)× 256 = 200,960 parameters.
Notice that the layer names such as dropout 1 and dense 2 have sub-

scripts. These may appear somewhat random; in fact, if you fit the same
model again, these will change. They are of no consequence: they vary be-
cause the model specification code is run in python, and these subscripts
are incremented every time keras model sequential() is called.
Next, we add details to the model to specify the fitting algorithm. We

fit the model by minimizing the cross-entropy function given by (10.14).

> modelnn %>% compile(loss = "categorical_crossentropy",

optimizer = optimizer_rmsprop (), metrics = c("accuracy")

)

Now we are ready to go. The final step is to supply training data, and
fit the model.

> system.time(

+ history <- modelnn %>%

+ fit(x_train , y_train , epochs = 30, batch_size = 128,

validation_split = 0.2)

+ )

> plot(history , smooth = FALSE)

We have suppressed the output here, which is a progress report on the
fitting of the model, grouped by epoch. This is very useful, since on large
datasets fitting can take time. Fitting this model took 144 seconds on a



448 10. Deep Learning

2.9 GHz MacBook Pro with 4 cores and 32 GB of RAM. Here we spec-
ified a validation split of 20%, so the training is actually performed on
80% of the 60,000 observations in the training set. This is an alternative
to actually supplying validation data, like we did in Section 10.9.1. See
?fit.keras.engine.training.Model for all the optional fitting arguments.
SGD uses batches of 128 observations in computing the gradient, and do-
ing the arithmetic, we see that an epoch corresponds to 375 gradient steps.
The last plot() command produces a figure similar to Figure 10.18.
To obtain the test error in Table 10.1, we first write a simple function

accuracy() that compares predicted and true class labels, and then use it
to evaluate our predictions.

> accuracy <- function(pred , truth)

+ mean(drop(pred) == drop(truth))

> modelnn %>% predict_classes(x_test) %>% accuracy(g_test)

[1] 0.9813

The table also reports LDA (Chapter 4) and multiclass logistic regression.
Although packages such as glmnet can handle multiclass logistic regression,
they are quite slow on this large dataset. It is much faster and quite easy
to fit such a model using the keras software. We just have an input layer
and output layer, and omit the hidden layers!

> modellr <- keras_model_sequential () %>%

+ layer_dense(input_shape = 784, units = 10,

activation = "softmax")

> summary(modellr)

________________________________________________________________

Layer (type) Output Shape Param #

================================================================

dense_6 (Dense) (None , 10) 7850

================================================================

Total params: 7,850

Trainable params: 7,850

Non -trainable params: 0

We fit the model just as before.

> modellr %>% compile(loss = "categorical_crossentropy",

optimizer = optimizer_rmsprop (), metrics = c("accuracy"))

> modellr %>% fit(x_train , y_train , epochs = 30,

batch_size = 128, validation_split = 0.2)

> modellr %>% predict_classes(x_test) %>% accuracy(g_test)

[1] 0.9286

10.9.3 Convolutional Neural Networks

In this section we fit a CNN to the CIFAR100 data, which is available in the
keras package. It is arranged in a similar fashion as the MNIST data.
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> cifar100 <- dataset_cifar100 ()

> names(cifar100)

[1] "train" "test"

> x_train <- cifar100$train$x

> g_train <- cifar100$train$y

> x_test <- cifar100$test$x

> g_test <- cifar100$test$y

> dim(x_train)

[1] 50000 32 32 3

> range(x_train[1,,, 1])

[1] 13 255

The array of 50,000 training images has four dimensions: each three-color
image is represented as a set of three channels, each of which consists of
32× 32 eight-bit pixels. We standardize as we did for the digits, but keep
the array structure. We one-hot encode the response factors to produce a
100-column binary matrix.

> x_train <- x_train / 255

> x_test <- x_test / 255

> y_train <- to_categorical(g_train , 100)

> dim(y_train)

[1] 50000 100

Before we start, we look at some of the training images using the jpeg
jpeg

package; similar code produced Figure 10.5 on page 411.

> library(jpeg)

> par(mar = c(0, 0, 0, 0), mfrow = c(5, 5))

> index <- sample(seq (50000) , 25)

> for (i in index) plot(as.raster(x_train[i,,, ]))

The as.raster() function converts the feature map so that it can be plotted
as.raster()

as a color image.
Here we specify a moderately-sized CNN for demonstration purposes,

similar in structure to Figure 10.8.

> model <- keras_model_sequential () %>%

+ layer_conv_2d(filters = 32, kernel_size = c(3, 3),

padding = "same", activation = "relu",

input_shape = c(32, 32, 3)) %>%

+ layer_max_pooling _2d(pool_size = c(2, 2)) %>%

+ layer_conv_2d(filters = 64, kernel_size = c(3, 3),

padding = "same", activation = "relu") %>%

+ layer_max_pooling _2d(pool_size = c(2, 2)) %>%

+ layer_conv_2d(filters = 128, kernel_size = c(3, 3),

padding = "same", activation = "relu") %>%

+ layer_max_pooling _2d(pool_size = c(2, 2)) %>%

+ layer_conv_2d(filters = 256, kernel_size = c(3, 3),

padding = "same", activation = "relu") %>%

+ layer_max_pooling _2d(pool_size = c(2, 2)) %>%

+ layer_flatten () %>%

+ layer_dropout(rate = 0.5) %>%

+ layer_dense(units = 512, activation = "relu") %>%
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+ layer_dense(units = 100, activation = "softmax")

> summary(model)

________________________________________________________________

Layer (type) Output Shape Param #

================================================================

conv2d (Conv2D) (None , 32, 32, 32) 896

________________________________________________________________

max_pooling2d (MaxPooling2D (None , 16, 16, 32) 0

________________________________________________________________

conv2d _1 (Conv2D) (None , 16, 16, 64) 18496

________________________________________________________________

max_pooling2d _1 (MaxPooling (None , 8, 8, 64) 0

________________________________________________________________

conv2d _2 (Conv2D) (None , 8, 8, 128) 73856

________________________________________________________________

max_pooling2d _2 (MaxPooling (None , 4, 4, 128) 0

________________________________________________________________

conv2d _3 (Conv2D) (None , 4, 4, 256) 295168

________________________________________________________________

max_pooling2d _3 (MaxPooling (None , 2, 2, 256) 0

________________________________________________________________

flatten (Flatten) (None , 1024) 0

________________________________________________________________

dropout (Dropout) (None , 1024) 0

________________________________________________________________

dense (Dense) (None , 512) 524800

________________________________________________________________

dense_1 (Dense) (None , 100) 51300

================================================================

Total params: 964 ,516

Trainable params: 964 ,516

Non -trainable params: 0

Notice that we used the padding = "same" argument to layer conv 2D(),
layer conv 2D()

which ensures that the output channels have the same dimension as the
input channels. There are 32 channels in the first hidden layer, in contrast
to the three channels in the input layer. We use a 3 × 3 convolution filter
for each channel in all the layers. Each convolution is followed by a max-
pooling layer over 2 × 2 blocks. By studying the summary, we can see
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that the channels halve in both dimensions after each of these max-pooling
operations. After the last of these we have a layer with 256 channels of
dimension 2 × 2. These are then flattened to a dense layer of size 1,024:
in other words, each of the 2 × 2 matrices is turned into a 4-vector, and
put side-by-side in one layer. This is followed by a dropout regularization
layer, then another dense layer of size 512, which finally reaches the softmax
output layer.
Finally, we specify the fitting algorithm, and fit the model.

> model %>% compile(loss = "categorical_crossentropy",

optimizer = optimizer_rmsprop (), metrics = c("accuracy"))

> history <- model %>% fit(x_train , y_train , epochs = 30,

batch_size = 128, validation_split = 0.2)

> model %>% predict_classes(x_test) %>% accuracy(g_test)

[1] 0.4561

This model takes 10 minutes to run and achieves 46% accuracy on the test
data. Although this is not terrible for 100-class data (a random classifier
gets 1% accuracy), searching the web we see results around 75%. Typically
it takes a lot of architecture carpentry, fiddling with regularization, and
time to achieve such results.

10.9.4 Using Pretrained CNN Models

We now show how to use a CNN pretrained on the imagenet database to
classify natural images, and demonstrate how we produced Figure 10.10.
We copied six jpeg images from a digital photo album into the directory
book images.27 We first read in the images, and convert them into the ar-
ray format expected by the keras software to match the specifications in
imagenet. Make sure that your working directory in R is set to the folder in
which the images are stored.

> img_dir <- "book_images"

> image_names <- list.files(img_dir)

> num_images <- length(image_names)

> x <- array(dim = c(num_images , 224, 224, 3))

> for (i in 1:num_images) {

+ img_path <- paste(img_dir , image_names[i], sep = "/")

+ img <- image_load(img_path, target_size = c(224, 224))

+ x[i,,, ] <- image_to_array(img)

+ }

> x <- imagenet_preprocess_input(x)

We then load the trained network. The model has 50 layers, with a fair bit
of complexity.

27These images are available from the data section of www.statlearning.com, the
ISL book website. Download book images.zip; when clicked it creates the book images

directory.
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> model <- application_resnet50(weights = "imagenet")

> summary(model)

Finally, we classify our six images, and return the top three class choices
in terms of predicted probability for each.

> pred6 <- model %>% predict(x) %>%

+ imagenet_decode_predictions(top = 3)

> names(pred6) <- image_names

> print(pred6)

10.9.5 IMDb Document Classification

Now we perform document classification (Section 10.4) on the IMDb dataset,
which is available as part of the keras package. We limit the dictionary size
to the 10,000 most frequently-used words and tokens.

> max_features <- 10000

> imdb <- dataset_imdb(num_words = max_features)

> c(c(x_train , y_train), c(x_test , y_test)) %<-% imdb

The third line is a shortcut for unpacking the list of lists. Each element
of x train is a vector of numbers between 0 and 9999 (the document),
referring to the words found in the dictionary. For example, the first training
document is the positive review on page 419. The indices of the first 12
words are given below.

> x_train [[1]][1:12]

[1] 1 14 22 16 43 530 973 1622 1385 65 458 4468

To see the words, we create a function, decode review(), that provides a
simple interface to the dictionary.

> word_index <- dataset_imdb_word_index ()

> decode_review <- function(text , word_index) {

+ word <- names(word_index)

+ idx <- unlist(word_index , use.names = FALSE)

+ word <- c("<PAD >", "<START >", "<UNK >", "<UNUSED >", word)

+ idx <- c(0:3, idx + 3)

+ words <- word[match(text, idx , 2)]

+ paste(words , collapse = " ")

+ }

> decode_review(x_train [[1]][1:12] , word_index)

[1] "<START > this film was just brilliant casting location

scenery story direction everyone ’s"

Next we write a function to “one-hot” encode each document in a list of
documents, and return a binary matrix in sparse-matrix format.

> library(Matrix)

> one_hot <- function(sequences , dimension) {

+ seqlen <- sapply(sequences , length)

+ n <- length(seqlen)
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+ rowind <- rep (1:n, seqlen)

+ colind <- unlist(sequences)

+ sparseMatrix(i = rowind , j = colind ,

dims = c(n, dimension))

+ }

To construct the sparse matrix, one supplies just the entries that are
nonzero. In the last line we call the function sparseMatrix() and supply
the row indices corresponding to each document and the column indices
corresponding to the words in each document, since we omit the values
they are taken to be all ones. Words that appear more than once in any
given document still get recorded as a one.

> x_train_1h <- one_hot(x_train , 10000)

> x_test_1h <- one_hot(x_test , 10000)

> dim(x_train_1h)

[1] 25000 10000

> nnzero(x_train _1h) / (25000 * 10000)

[1] 0.01316987

Only 1.3% of the entries are nonzero, so this amounts to considerable sav-
ings in memory. We create a validation set of size 2,000, leaving 23,000 for
training.

> set.seed (3)

> ival <- sample(seq(along = y_train), 2000)

First we fit a lasso logistic regression model using glmnet() on the training
data, and evaluate its performance on the validation data. Finally, we plot
the accuracy, acclmv, as a function of the shrinkage parameter, λ. Similar
expressions compute the performance on the test data, and were used to
produce the left plot in Figure 10.11. The code takes advantage of the
sparse-matrix format of x train 1h, and runs in about 5 seconds; in the
usual dense format it would take about 5 minutes.

> library(glmnet)

> fitlm <- glmnet(x_train_1h[-ival , ], y_train[-ival],

family = "binomial", standardize = FALSE)

> classlmv <- predict(fitlm , x_train_1h[ival , ]) > 0

> acclmv <- apply(classlmv , 2, accuracy , y_train[ival] > 0)

We applied the accuracy() function that we wrote in Lab 10.9.2 to every
column of the prediction matrix classlmv, and since this is a logical matrix
of TRUE/FALSE values, we supply the second argument truth as a logical
vector as well.
Before making a plot, we adjust the plotting window.

> par(mar = c(4, 4, 4, 4), mfrow = c(1, 1))

> plot(-log(fitlm$lambda), acclmv)

Next we fit a fully-connected neural network with two hidden layers, each
with 16 units and ReLU activation.
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> model <- keras_model_sequential () %>%

+ layer_dense(units = 16, activation = "relu",

input_shape = c(10000)) %>%

+ layer_dense(units = 16, activation = "relu") %>%

+ layer_dense(units = 1, activation = "sigmoid")

> model %>% compile(optimizer = "rmsprop",

loss = "binary_crossentropy", metrics = c("accuracy"))

> history <- model %>% fit(x_train _1h[-ival , ], y_train[-ival],

epochs = 20, batch_size = 512,

validation_data = list(x_train_1h[ival , ], y_train[ival]))

The history object has a metrics component that records both the training
and validation accuracy at each epoch. Figure 10.11 includes test accuracy
at each epoch as well. To compute the test accuracy, we rerun the entire
sequence above, replacing the last line with

> history <- model %>% fit(

x_train_1h[-ival , ], y_train[-ival], epochs = 20,

batch_size = 512, validation_data = list(x_test_1h, y_test)

)

10.9.6 Recurrent Neural Networks

In this lab we fit the models illustrated in Section 10.5.

Sequential Models for Document Classification

Here we fit a simple LSTM RNN for sentiment analysis with the IMDb

movie-review data, as discussed in Section 10.5.1. We showed how to input
the data in 10.9.5, so we will not repeat that here.
We first calculate the lengths of the documents.

> wc <- sapply(x_train , length)

> median(wc)

[1] 178

> sum(wc <= 500) / length(wc)

[1] 0.91568

We see that over 91% of the documents have fewer than 500 words. Our
RNN requires all the document sequences to have the same length. We
hence restrict the document lengths to the last L = 500 words, and pad
the beginning of the shorter ones with blanks.

> maxlen <- 500

> x_train <- pad_sequences(x_train , maxlen = maxlen)

> x_test <- pad_sequences(x_test , maxlen = maxlen)

> dim(x_train)

[1] 25000 500

> dim(x_test)

[1] 25000 500

> x_train[1, 490:500]

[1] 16 4472 113 103 32 15 16 5345 19 178 32
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The last expression shows the last few words in the first document. At this
stage, each of the 500 words in the document is represented using an integer
corresponding to the location of that word in the 10,000-word dictionary.
The first layer of the RNN is an embedding layer of size 32, which will be
learned during training. This layer one-hot encodes each document as a
matrix of dimension 500× 10, 000, and then maps these 10, 000 dimensions
down to 32.

> model <- keras_model_sequential () %>%

+ layer_embedding(input_dim = 10000, output_dim = 32) %>%

+ layer_lstm(units = 32) %>%

+ layer_dense(units = 1, activation = "sigmoid")

The second layer is an LSTM with 32 units, and the output layer is a single
sigmoid for the binary classification task.
The rest is now similar to other networks we have fit. We track the test

performance as the network is fit, and see that it attains 87% accuracy.

> model %>% compile(optimizer = "rmsprop",

loss = "binary_crossentropy", metrics = c("acc"))

> history <- model %>% fit(x_train , y_train , epochs = 10,

batch_size = 128, validation_data = list(x_test , y_test))

> plot(history)

> predy <- predict(model, x_test) > 0.5

> mean(abs(y_test == as.numeric(predy)))

[1] 0.8721

Time Series Prediction

We now show how to fit the models in Section 10.5.2 for time series pre-
diction. We first set up the data, and standardize each of the variables.

> library(ISLR2)

> xdata <- data.matrix(

NYSE[, c("DJ_return", "log_volume","log_volatility")]

)

> istrain <- NYSE[, "train"]

> xdata <- scale(xdata)

The variable istrain contains a TRUE for each year that is in the training
set, and a FALSE for each year in the test set.
We first write functions to create lagged versions of the three time series.

We start with a function that takes as input a data matrix and a lag L,
and returns a lagged version of the matrix. It simply inserts L rows of NA
at the top, and truncates the bottom.

> lagm <- function(x, k = 1) {

+ n <- nrow(x)

+ pad <- matrix(NA , k, ncol(x))

+ rbind(pad , x[1:(n - k), ])

+ }
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We now use this function to create a data frame with all the required lags,
as well as the response variable.

> arframe <- data.frame(log_volume = xdata[, "log_volume"],

L1 = lagm(xdata , 1), L2 = lagm(xdata , 2),

L3 = lagm(xdata , 3), L4 = lagm(xdata , 4),

L5 = lagm(xdata , 5)

)

If we look at the first five rows of this frame, we will see some missing
values in the lagged variables (due to the construction above). We remove
these rows, and adjust istrain accordingly.

> arframe <- arframe [ -(1:5), ]

> istrain <- istrain [ -(1:5)]

We now fit the linear AR model to the training data using lm(), and predict
on the test data.

> arfit <- lm(log_volume ∼ ., data = arframe[istrain , ])

> arpred <- predict(arfit , arframe [!istrain , ])

> V0 <- var(arframe [!istrain , "log_volume"])

> 1 - mean(( arpred - arframe [!istrain , "log_volume"])^2) / V0

[1] 0.4132

The last two lines compute the R2 on the test data, as defined in (3.17).
We refit this model, including the factor variable day of week.

> arframed <-

data.frame(day = NYSE [ -(1:5), "day_of_week"], arframe)

> arfitd <- lm(log_volume ∼ ., data = arframed[istrain , ])

> arpredd <- predict(arfitd , arframed [!istrain , ])

> 1 - mean(( arpredd - arframe [!istrain , "log_volume"])^2) / V0

[1] 0.4599

To fit the RNN, we need to reshape these data, since it expects a sequence
of L = 5 feature vectors X = {Xℓ}L1 for each observation, as in (10.20) on
page 428. These are lagged versions of the time series going back L time
points.

> n <- nrow(arframe)

> xrnn <- data.matrix(arframe[, -1])

> xrnn <- array(xrnn , c(n, 3, 5))

> xrnn <- xrnn[,, 5:1]

> xrnn <- aperm(xrnn , c(1, 3, 2))

> dim(xrnn)

[1] 6046 5 3

We have done this in four steps. The first simply extracts the n×15 matrix
of lagged versions of the three predictor variables from arframe. The second
converts this matrix to an n×3×5 array. We can do this by simply changing
the dimension attribute, since the new array is filled column wise. The third
step reverses the order of lagged variables, so that index 1 is furthest back
in time, and index 5 closest. The final step rearranges the coordinates of
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the array (like a partial transpose) into the format that the RNN module
in keras expects.
Now we are ready to proceed with the RNN, which uses 12 hidden units.

> model <- keras_model_sequential () %>%

+ layer_simple_rnn(units = 12,

input_shape = list(5, 3),

dropout = 0.1, recurrent_dropout = 0.1) %>%

+ layer_dense(units = 1)

> model %>% compile(optimizer = optimizer_rmsprop (),

loss = "mse")

We specify two forms of dropout for the units feeding into the hidden layer.
The first is for the input sequence feeding into this layer, and the second is
for the previous hidden units feeding into the layer. The output layer has
a single unit for the response.
We fit the model in a similar fashion to previous networks. We supply

the fit function with test data as validation data, so that when we monitor
its progress and plot the history function we can see the progress on the
test data. Of course we should not use this as a basis for early stopping,
since then the test performance would be biased.

> history <- model %>% fit(

xrnn[istrain ,, ], arframe[istrain , "log_volume"],

batch_size = 64, epochs = 200,

validation_data =

list(xrnn[!istrain ,, ], arframe [!istrain , "log_volume"])

)

> kpred <- predict(model, xrnn[!istrain ,, ])

> 1 - mean((kpred - arframe [!istrain , "log_volume"])^2) / V0

[1] 0.416

This model takes about one minute to train.
We could replace the keras model sequential() command above with the

following command:

> model <- keras_model_sequential () %>%

+ layer_flatten(input_shape = c(5, 3)) %>%

+ layer_dense(units = 1)

Here, layer flatten() simply takes the input sequence and turns it into
a long vector of predictors. This results in a linear AR model. To fit a
nonlinear AR model, we could add in a hidden layer.
However, since we already have the matrix of lagged variables from the

AR model that we fit earlier using the lm() command, we can actually fit
a nonlinear AR model without needing to perform flattening. We extract
the model matrix x from arframed, which includes the day of week variable.

> x <- model.matrix(log_volume ∼ . - 1, data = arframed)

> colnames(x)

[1] "dayfri" "daymon" "daythur"

[4] "daytues" "daywed" "L1.DJ_return"
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[7] "L1.log_volume" "L1.log_volatility" "L2.DJ_return"

[10] "L2.log_volume" "L2.log_volatility" "L3.DJ_return"

[13] "L3.log_volume" "L3.log_volatility" "L4.DJ_return"

[16] "L4.log_volume" "L4.log_volatility" "L5.DJ_return"

[19] "L5.log_volume" "L5.log_volatility"

The -1 in the formula avoids the creation of a column of ones for the inter-
cept. The variable day of week is a five-level factor (there are five trading
days), and the -1 results in five rather than four dummy variables.
The rest of the steps to fit a nonlinear AR model should by now be

familiar.

> arnnd <- keras_model_sequential () %>%

+ layer_dense(units = 32, activation = ’relu’,

input_shape = ncol(x)) %>%

+ layer_dropout(rate = 0.5) %>%

+ layer_dense(units = 1)

> arnnd %>% compile(loss = "mse",

optimizer = optimizer_rmsprop ())

> history <- arnnd %>% fit(

x[istrain , ], arframe[istrain , "log_volume"], epochs = 100,

batch_size = 32, validation_data =

list(x[!istrain , ], arframe [!istrain , "log_volume"])

)

> plot(history)

> npred <- predict(arnnd , x[!istrain , ])

> 1 - mean(( arframe [!istrain , "log_volume"] - npred)^2) / V0

[1] 0.4698

10.10 Exercises

Conceptual

1. Consider a neural network with two hidden layers: p = 4 input units,
2 units in the first hidden layer, 3 units in the second hidden layer,
and a single output.

(a) Draw a picture of the network, similar to Figures 10.1 or 10.4.

(b) Write out an expression for f(X), assuming ReLU activation
functions. Be as explicit as you can!

(c) Now plug in some values for the coefficients and write out the
value of f(X).

(d) How many parameters are there?

2. Consider the softmax function in (10.13) (see also (4.13) on page 141)
for modeling multinomial probabilities.

(a) In (10.13), show that if we add a constant c to each of the zℓ,
then the probability is unchanged.
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(b) In (4.13), show that if we add constants cj , j = 0, 1, . . . , p, to
each of the corresponding coefficients for each of the classes, then
the predictions at any new point x are unchanged.

This shows that the softmax function is over-parametrized. However, over-
parametrizedregularization and SGD typically constrain the solutions so that this

is not a problem.

3. Show that the negative multinomial log-likelihood (10.14) is equiva-
lent to the negative log of the likelihood expression (4.5) when there
are M = 2 classes.

4. Consider a CNN that takes in 32 × 32 grayscale images and has a
single convolution layer with three 5 × 5 convolution filters (without
boundary padding).

(a) Draw a sketch of the input and first hidden layer similar to
Figure 10.8.

(b) How many parameters are in this model?

(c) Explain how this model can be thought of as an ordinary feed-
forward neural network with the individual pixels as inputs, and
with constraints on the weights in the hidden units. What are
the constraints?

(d) If there were no constraints, then how many weights would there
be in the ordinary feed-forward neural network in (c)?

5. In Table 10.2 on page 433, we see that the ordering of the three
methods with respect to mean absolute error is different from the
ordering with respect to test set R2. How can this be?

Applied

6. Consider the simple function R(β) = sin(β) + β/10.

(a) Draw a graph of this function over the range β ∈ [−6, 6].
(b) What is the derivative of this function?

(c) Given β0 = 2.3, run gradient descent to find a local minimum
of R(β) using a learning rate of ρ = 0.1. Show each of β0,β1, . . .
in your plot, as well as the final answer.

(d) Repeat with β0 = 1.4.

7. Fit a neural network to the Default data. Use a single hidden layer
with 10 units, and dropout regularization. Have a look at Labs 10.9.1–
10.9.2 for guidance. Compare the classification performance of your
model with that of linear logistic regression.
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8. From your collection of personal photographs, pick 10 images of an-
imals (such as dogs, cats, birds, farm animals, etc.). If the subject
does not occupy a reasonable part of the image, then crop the image.
Now use a pretrained image classification CNN as in Lab 10.9.4 to
predict the class of each of your images, and report the probabilities
for the top five predicted classes for each image.

9. Fit a lag-5 autoregressive model to the NYSE data, as described in
the text and Lab 10.9.6. Refit the model with a 12-level factor repre-
senting the month. Does this factor improve the performance of the
model?

10. In Section 10.9.6, we showed how to fit a linear AR model to the
NYSE data using the lm() function. However, we also mentioned that
we can “flatten” the short sequences produced for the RNN model in
order to fit a linear AR model. Use this latter approach to fit a linear
AR model to the NYSE data. Compare the test R2 of this linear AR
model to that of the linear AR model that we fit in the lab. What
are the advantages/disadvantages of each approach?

11. Repeat the previous exercise, but now fit a nonlinear AR model by
“flattening” the short sequences produced for the RNN model.

12. Consider the RNN fit to the NYSE data in Section 10.9.6. Modify the
code to allow inclusion of the variable day of week, and fit the RNN.
Compute the test R2.

13. Repeat the analysis of Lab 10.9.5 on the IMDb data using a similarly
structured neural network. There we used a dictionary of size 10,000.
Consider the effects of varying the dictionary size. Try the values
1000, 3000, 5000, and 10,000, and compare the results.


