

Machine Learning in
Business:

An Introduction to the World of Data
Science

Machine Learning in
Business:

An Introduction to the World of Data
Science

Second Edition

John C. Hull

University Professor
Joseph L. Rotman School of Management

University of Toronto

Second Printing
Copyright © 2019, 2020 by John C. Hull

All Rights Reserved
ISBN: 9798644074372

To my students

vii

Contents

Preface xi

Chapter 1 Introduction 1
 1.1 This book and the ancillary material 3
 1.2 Types of machine learning models 4
 1.3 Validation and testing 6
 1.4 Data cleaning 14
 1.5 Bayes’ theorem 16
 Summary 19
 Short concept questions 20
 Exercises 21

Chapter 2 Unsupervised Learning 23
 2.1 Feature scaling 24
 2.2 The k-means algorithm 25
 2.3 Choosing k 28
 2.4 The curse of dimensionality 31
 2.5 Country risk 31
 2.6 Alternative clustering algorithms 35
 2.7 Principal components analysis 39
 Summary 43
 Short concept questions 44
 Exercises 45

Chapter 3 Supervised Learning: Linear and Logistic

Regression

47
 3.1 Linear regression: one feature 48
 3.2 Linear regression: multiple features 49
 3.3 Categorical features 52
 3.4 Regularization 53
 3.5 Ridge regression 54
 3.6 Lasso regression 58
 3.7 Elastic Net regression 60
 3.8 Results for house price data 62
 3.9 Logistic regression 66

viii Contents

 3.10 Decision criteria 69
 3.11 Application to credit decisions 70
 3.12 The k-nearest neighbor algorithm 76
 Summary 76
 Short concept questions 77
 Exercises 78

Chapter 4 Supervised Learning: Decision Trees 81
 4.1 Nature of decision trees 82
 4.2 Information gain measures 83
 4.3 Application to credit decisions 85
 4.4 The naïve Bayes classifier 91
 4.5 Continuous target variables 95
 4.6 Ensemble learning 98
 Summary 100
 Short concept questions 101
 Exercises 101

Chapter 5 Supervised Learning: SVMs 103
 5.1 Linear SVM classification 103
 5.2 Modification for soft margin 109
 5.3 Non-linear separation 112
 5.4 Predicting a continuous variable 114
 Summary 118
 Short concept questions 118
 Exercises 119

Chapter 6 Supervised Learning: Neural Networks 121
 6.1 Single layer ANNs 121
 6.2 Multi-layer ANNs 125
 6.3 Gradient descent algorithm 126
 6.4 Variations on the basic method 131
 6.5 The stopping rule 133
 6.6 The Black−Scholes−Merton formula 133
 6.7 Extensions 137
 6.8 Autoencoders 138
 6.9 Convolutional neural networks 140
 6.10 Recurrent neural networks 142
 Summary 143
 Short concept questions 144
 Exercises

144

Contents ix

Chapter 7 Reinforcement Learning 147
 7.1 The multi-armed bandit problem 148
 7.2 Changing environment 152
 7.3 The game of Nim 154
 7.4 Temporal difference learning 157
 7.5 Deep Q-learning 159
 7.6 Applications 159
 Summary 161
 Short concept questions 162
 Exercises 163

Chapter 8 Natural Language Processing 165
 8.1 Sources of data 168
 8.2 Pre-processing 169
 8.3 Bag of words model 170
 8.4 Application of naïve Bayes classifier 172
 8.5 Application of other algorithms 176
 8.6 Information retrieval 177
 8.7 Other NLP applications 178
 Summary 180
 Short concept questions 181
 Exercises 181

Chapter 9

Model Interpretability

183

 9.1 Linear regression 185
 9.2 Logistic regression 189

 9.3 Black-box models 192
 9.4 Shapley values 193
 9.5 LIME 196
 Summary 196
 Short concept questions 197
 Exercises 198

Chapter 10 Applications in Finance 199
 10.1 Derivatives 199
 10.2 Delta 202
 10.3 Volatility surfaces 203
 10.4 Understanding volatility surface movements 204
 10.5 Using reinforcement learning for hedging 208
 10.6 Extensions 210
 10.7 Other finance applications 212
 Summary 213

x Contents

 Short concept questions 214
 Exercises 214

Chapter 11 Issues for Society 217
 11.1 Data privacy 218
 11.2 Biases 209
 11.3 Ethics 220
 11.4 Transparency 221
 11.5 Adversarial machine learning 221
 11.6 Legal issues 222
 11.7 Man vs. machine 223

Answers to End of Chapter Questions 225
Glossary of Terms 243
Index 253

xi

Preface

This book is based on my experience teaching introductory courses
on machine learning to business school students and executive groups.
The purpose of the material is not to convert the reader into a data sci-
entist. Instead, it is to give the reader an understanding of the tools used
by data scientists and how they can further the objectives of an organi-
zation. The second edition improves the presentation of material and
contains three new chapters.

Most students recognize that they need some knowledge of machine
learning to survive in a world where jobs will be increasingly impacted
by it. Today, all executives need to know how to use computers. Tomor-
row, all executives will need to be comfortable managing large data sets
and working with data science professionals to improve their produc-
tivity.

I have used no matrix or vector algebra and no calculus in this book.
Although these areas of study can help specialists, it has been my expe-
rience that most business school students and most executives are not
comfortable with them.

The book explains the most popular algorithms used by data scien-
tists. This will enable the reader to assess their strengths and weak-
nesses for a particular situation and work productively with data sci-
ence professionals. The algorithms are illustrated with a number of dif-
ferent data sets, which can be downloaded from my website:

www-2.rotman.utoronto.ca/~hull
Both Excel worksheets and Python code accompany the data sets. Vir-
tually all my students are comfortable with Excel before taking my
courses. I insist that all become comfortable with Python as well. This is
not a hard sell. Students recognize that coding skills have become a
necessary prerequisite for many jobs in business.

xii Preface

Several hundred PowerPoint slides can be downloaded from my
website. Instructors who choose to adopt the book are welcome to
adapt the slides to meet their own needs.

A number of people have helped me move this book to a second edi-
tion. I would particularly like to thank Emilio Barone, Jacky Chen, Peter
Hull, Raymond Kan, Eddie Mizzi, and Jun Yuan, who made many sugges-
tions for improving the material. I am grateful to Jay Cao, Jeff Li, and Niti
Mishra who worked on some of the Python code that accompanies the
book. I would also like to thank Rotman’s FinHub center, the TD bank,
and the Global Risk Institute in Financial Services for providing funding
for the development of research and teaching materials in machine
learning and financial innovation. Peter Christoffersen (prior to his un-
timely death in 2018) and Andreas Park have been great colleagues at
FinHub and provided much of the inspiration for the book.

I welcome comments on the book from readers. My email address is
hull@rotman.utoronto.ca.

John Hull

About the Author

John Hull is a University Professor at the Joseph L. Rotman School of
Management, University of Toronto. Prior to writing this book, he wrote
three best-selling books in the derivatives and risk management area.
His books have an applied focus and he is proud that they sell equally
well in the practitioner and college markets. He is academic director of
FinHub, Rotman’s Financial Innovation Lab, which carries out research
and develops educational material in all aspects of financial innova-
tion. He has consulted for many companies throughout the world and
has won many teaching awards, including University of Toronto’s pres-
tigious Northrop Frye award.

1

Chapter 1

Introduction

Machine learning is becoming an increasingly important tool in

business—so much so that almost all employees are likely to be impact-
ed by it in one way or another over the next few years. Machine learning
is concerned with using large data sets to learn the relationships be-
tween variables, make predictions, and take decisions in a changing en-
vironment.

The data available for machine learning is growing exponentially. It
is estimated that in any two-year period we generate nine times as
much data as existed at the beginning of the two years.1 Companies now
have more information than ever before about their customers and
their purchasing habits. Hedge funds and pension plans can collect large
amounts of data and opinions about companies they invest in. Advances
in computer processing speeds and reductions in data storage costs al-
low us process this data and reach conclusions in ways that were simply
not possible in the past.

Machine learning is a branch of artificial intelligence (AI). AI is con-
cerned with developing ways in which machines can imitate human in-
telligence, possibly improving on it. Machine learning involves the crea-
tion of intelligence by learning from large volumes of data. It is arguably

1 For discussion of this see: www.mediapost.com/publications/article/291358/90-
of-todays-data-created-in-two-years.html

https://www.mediapost.com/publications/article/291358/90-of-todays-data-created-in-two-years.html
https://www.mediapost.com/publications/article/291358/90-of-todays-data-created-in-two-years.html

2 Chapter 1

the most exciting development within AI and one that has the potential
to transform virtually all aspects of a business.2

What are the advantages for society of replacing human decision
making by machines? One advantage is speed. Machines can process
data and come to a conclusion much faster than humans. The results
produced by a machine are consistent and easily replicated on other
machines. By contrast, humans occasionally behave erratically and
training a human for a task can be quite time consuming and expensive.

To explain how machine learning differs from other AI approaches
consider the simple task of programming a computer to play tic tac toe
(also known as noughts and crosses). One approach would be to pro-
vide the computer with a look-up table listing the positions that can
arise and the move that would be made by an expert human player in
each of those positions. Another would be to create for the computer a
large number of games (e.g., by arranging for the computer to play
against itself thousands of times) and let it learn the best move. The
second approach is an application of machine learning. Either approach
can be successfully used for a simple game such as tic tac toe. Machine
learning approaches have been shown to work well for more complicat-
ed games such as chess and Go where the first approach is clearly not
possible.

A good illustration of the power of machine learning is provided by
language translation. How can a computer be programmed to translate
between two languages, say from English to French? One idea is to give
the computer an English to French dictionary and program it to trans-
late word-by-word. Unfortunately, this produces very poor results. A
natural extension of this idea is to develop a look up table for translat-
ing phrases rather than individual words. The results from this are an
improvement, but still far from perfect. Google has pioneered a better
approach using machine learning. This was announced in November
2016 and is known as “Google Neural Machine Translation” (GNMT).3 A
computer is given a large volume of material in English together with
the French translation. It learns from that material and develops its own
(quite complex) translation rules. The results from this have been a big
improvement over previous approaches.

Data science is the field that includes machine learning but is some-
times considered to be somewhat broader including such tasks as the
setting of objectives, implementing systems, and communicating with

2 Some organizations now use the terms “machine learning” and “artificial intelli-
gence” interchangeably.
3 See https://arxiv.org/pdf/1609.08144.pdf for an explanation of GNMT by the
Google research team.

https://arxiv.org/pdf/1609.08144.pdf

Introduction 3

 stakeholders.4 We will consider the terms “machine learning” and “da-
ta science” to be interchangeable in this book. This is because it is diffi-
cult to see how machine learning specialists can be effective in business
if they do not get involved in working toward the objectives of their
employers.

Machine learning or data science can be portrayed as the new world
of statistics. Traditionally, statistics has been concerned with such top-
ics as probability distributions, confidence intervals, significance tests,
and linear regression. A knowledge of these topics is important, but we
are now able to learn from large data sets in ways that were not possi-
ble before. For example:

 We can develop non-linear models for forecasting and improved

decision making.

 We can search for patterns in data to improve a company’s un-

derstanding of its customers and the environment in which it op-

erates.

 We can develop decision rules where we are interacting with a

changing environment.

As mentioned earlier, these applications of machine learning are now
possible because of increases in computer processing speeds, reduc-
tions in data storage costs, and the increasing amounts of data that are
becoming available.

When a statistician or econometrician dabbles in machine learning
the terminology is liable to seem strange at first. For example, statisti-
cians and econometricians talk about independent variables and de-
pendent variables while decision scientists talk about features and tar-
gets. The terminology of data science will be explained as the book pro-
gresses and a glossary of terms is provided at the end.

 1.1 This Book and the Ancillary Material

This book is designed to provide readers with the knowledge to ena-
ble them to work effectively with data science professionals. It will not
convert the reader into a data scientist, but it is hoped that the book will

4 See, for example, H. Bowne-Anderson, “What data scientists really do, according to
35 data scientists,” Harvard Business Review, August 2018:
https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-
scientists

https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists
https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists

4 Chapter 1

inspire some readers to learn more and develop their abilities in this
area. Data science may well prove to be the most rewarding and excit-
ing profession in the 21st century.

To use machine learning effectively you have to understand how the
underlying algorithms work. It is tempting to learn a programming lan-
guage such as Python and apply various packages to your data without
really understanding what the packages are doing or even how the re-
sults should be interpreted. This would be a bit like a finance specialist
using the Black−Scholes−Merton model to value options without under-
standing where it comes from or its limitations.

The objective of this book is to explain the algorithms underlying
machine learning so that the results from using the algorithms can be
assessed knowledgeably. Anyone who is serious about using machine
learning will want to learn a language such as Python for which many
packages have been developed. This book takes the unusual approach
of using both Excel and Python to provide backup material. This is be-
cause it is anticipated that some readers will, at least initially, be much
more comfortable with Excel than with Python.

The backup material can be found on the author’s website:
www-2.rotman.utoronto.ca/~hull

Readers can start by focusing on the Excel worksheets and then move to
Python as they become more comfortable with it. Python will enable
them use machine learning packages, handle data sets that are too large
for Excel, and benefit from Python’s faster processing speeds.

 1.2 Types of Machine Learning Models

There are four main categories of machine learning models

 Supervised learning
 Unsupervised learning
 Semi-supervised learning
 Reinforcement learning

Supervised learning is concerned with using data to make predictions.
In the next section, we will show how a simple regression model can be
used to predict salaries. This is an example of supervised learning. In
Chapter 3, we will consider how a similar model can be used to predict
house prices. We can distinguish between supervised learning models
that are used to predict a variable that can take a continuum of values

http://www.rotman.utoronto.ca/~hull

Introduction 5

(such as an individual’s salary or the price of a house) and models that
are used for classification. Classification models are very common in
machine learning. As an example, we will later look at an application of
machine learning where potential borrowers are classified as accepta-
ble or unacceptable credit risks.

Unsupervised learning is concerned with recognizing patterns in da-
ta. The main objective is not to forecast a particular variable. Rather it is
to understand the environment represented by the data better. Consid-
er a company that markets a range of products to consumers. Data on
consumer purchases could be used to determine the characteristics of
the customers who buy different products. This in turn could influence
the way the products are advertised. As we will see in Chapter 2, clus-
tering is the main tool used in unsupervised learning.

The data for supervised learning contains what are referred to as
features and labels. The labels are the values of the target that is to be
predicted. The features are the variables from which the predictions are
to be made. For example, when predicting the price of a house the fea-
tures could be the square feet of living space, the number of bedrooms,
the number of bathrooms, the size of the garage, whether the basement
is finished, and so on. The label would be the house price. The data for
unsupervised learning consists of features but no labels because the
model is being used to identify patterns, not to forecast something. We
could use an unsupervised learning model to understand the houses
that exist in a certain neighborhood without trying to predict prices. We
might find that there is a cluster of houses with 1,500 to 2,000 square
feet of living space, three bedrooms, and a one-car garage and another
cluster of houses with 5,000 to 6,000 square feet of living area, six bed-
rooms, and a two-car garage.

Semi-supervised learning is a cross between supervised and un-
supervised learning. It arises when we are trying to predict something
and we have some data with labels (i.e., values for the target) and some
(usually much more) unlabeled data. It might be thought that the unla-
beled data is useless, but this is not necessarily the case. The unlabeled
data can be used in conjunction with the labeled data to produce clus-
ters which help prediction. For example, suppose we are interested in
predicting whether a customer will purchase a particular product from
features such as age, income level, and so on. Suppose further that we
have a small amount of labeled data (i.e., data which indicates the fea-
tures of customers as well as whether they bought or did not buy the
product) and a much larger amount of unlabeled data (i.e., data which
indicates the features of potential customers, but does not indicate
whether they bought the product). We can apply unsupervised learning

6 Chapter 1

 to use the features to cluster potential customers. Imagine a simple
situation where:

 There are two clusters, A and B, in the full data set.
 The purchasers from the labeled data all correspond to points

in Cluster A while the non-purchasers from the labeled data all
correspond to points in the other Cluster B.

We might reasonably classify all individuals in Cluster A as buyers and
all individuals in Cluster B as non-buyers.

Human beings use semi-supervised learning. Imagine that you do
not know the names “cat” and “dog,” but are observant. You notice two
distinct clusters of domestic pets in your neighborhood. Finally some-
one points at two particular animals and tells you one is a cat while the
other is a dog. You will then have no difficulty in using semi-supervised
learning to apply the labels to all the other animals you have seen. If
humans use semi-supervised learning in this way, it should come as no
surprise that machines can do so as well. Many machine learning algo-
rithms are based on studying the ways our brains process data.

The final type of machine learning, reinforcement learning, is con-
cerned with situations where a series of decisions is to be taken. The
environment is typically changing in an uncertain way as the decisions
are being taken. Driverless cars use reinforcement learning algorithms.
The algorithms underlie the programs mentioned earlier for playing
games such as Go and chess. They are also used for some trading and
hedging decisions. We will discuss reinforcement learning in Chapter 7.

1.3 Validation and Testing

When a data set is used for forecasting or determining a decision
strategy, there is a danger that the machine learning model will work
well for the data set, but will not generalize well to other data. An obvi-
ous point is that it is important that the data used in a machine learning
model be representative of the situations to which the model is to be
applied. For example, using data for a region where customers have a
high income to predict the national sales for a product is likely to give
biased results.

As statisticians have realized for a long time, it is also important to
test a model out-of-sample. By this we mean that the model should be
tested on data that is different from the sample data used to determine
the parameters of the model.

Introduction 7

Data scientists are typically not just interested in testing one model.
They typically try several different models, choose between them, and
then test the accuracy of the chosen model. For this, they need three
data sets:

 a training set

 a validation set

 a test set

The training set is used to determine the parameters of the models
that are under consideration. The validation set is used to determine
how well each of the models generalizes to a different data set. The test
set is held back to provide a measure of the accuracy of the chosen
model.

We will illustrate this with a simple example. Suppose that we are in-
terested in predicting the salaries of people working in a particular pro-
fession in a certain part of the United States from their age. We collect
data on a random sample of 30 individuals. (This is a very small data set
created to provide a simple example. The data sets used in machine
learning are many times larger than this.) The first ten observations
(referred to in machine learning as instances) will be used to form the
training set. The next ten observations will be used for form the valida-
tion set and the final ten observations will be used to form the test set.

The training set is shown in Table 1.1 and plotted in Figure 1.1. It is
tempting to choose a model that fits the training set really well. Some
experimentation shows that a polynomial of degree five does this. This
is the model:

2 3 4 5

1 2 3 4 5Y a b X b X b X b X b X     

where Y is salary and X is age. The result of fitting the polynomial to the
data is shown in Figure 1.2. Details of all analyses carried out, are in

www-2.rotman.utoronto.ca/~hull
The model provides a good fit to the data. The standard deviation of

the difference between the salary given by the model and the actual sal-
ary for the ten individuals in the training data set, which is referred to
as the root-mean-squared error (rmse), is $12,902. However, common
sense would suggest that we may have over-fitted the data. (This is be-
cause the curve in Figure 1.2 seems unrealistic. It declines, increases,
declines, and then increases again as age increases.) We need to check
the model out-of-sample. To use the language of data science, we need

http://www.rotman.utoronto.ca/~hull/ml

8 Chapter 1

to determine whether the model generalizes well to a validation data
set that is different from the training set in Table 1.1.

Table 1.1 The training data set: salaries for a random sample of ten
people working in a particular profession in a certain area.

Age (years) Salary ($)

25 135,000

55 260,000

27 105,000

35 220,000

60 240,000

65 265,000

45 270,000

40 300,000

50 265,000

30 105,000

Figure 1.1 Scatter plot of the training data set in Table 1.1

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

20 30 40 50 60 70

S
a

la
ry

 (
$

)

Age (years)

Introduction 9

Figure 1.2 Result of fitting a polynomial of degree 5 to the data in Ta-
ble 1.1 and Figure 1.1 (see Salary vs. Age Excel file)

The validation set is shown in Table 1.2. The scatter plot for this da-

ta is in Figure 1.3. When we use the model in Figure 1.2 for this data, we
find that the root mean square error (rmse) is about $38,794, much
higher than the $12,902 we obtained using the training data set in Table
1.1. This is a clear indication that the model in Figure 1.2 is over-fitting:
it does not generalize well to new data.

Table 1.2 The validation data set

Age (years) Salary ($)

30 166,000
26 78,000
58 310,000
29 100,000
40 260,000
27 150,000
33 140,000
61 220,000
27 86,000
48 276,000

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

20 30 40 50 60 70

S
a

la
ry

 (
$

)

Age (years)

10 Chapter 1

Figure 1.3 Scatter plot for data in Table 1.2

The natural next step is to look for a simpler model. The scatter plot
in Figure 1.1 suggests that a quadratic model might be appropriate. This
model is:

2

1 2Y a b X b X  

i.e., a polynomial of degree two.

The best-fit quadratic model together with the training data set from
Figure 1.1 is shown in Figure 1.4. The fit to the training set is of course
not as good as the model in Figure 1.2. The standard deviation of the
error is $32,932. However, the model generalizes to new data reasona-
bly well. The standard deviation of the errors given by the quadratic
model for the validation data set in Table 1.2 and Figure 1.3 is $33,554,
only a little worse than the $32,932 for the training data. The quadratic
model therefore generalizes better than the more elaborate model in
Figure 1.2.

The model in Figure 1.4 is simpler than the model in Figure 1.2 and
generalizes well to the validation set. However, this does not mean that
simpler models are always better than more complex models. In the
case of the data we are considering, we could use a linear model. This
would lead to the predictions in Figure 1.5.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

20 30 40 50 60 70

S
a

la
ry

 (
$

)

Age (years)

Introduction 11

Figure 1.4 Result of fitting a quadratic model to the data in Table 1.1
and Figure 1.1 (see Salary vs. Age Excel file)

Visually it can be seen that this model does not capture the decline in

salaries as individuals age beyond 50. This observation is confirmed by
the standard deviation of the error for the training data set, which is
$49,731, much worse than that for the quadratic model.

Figure 1.5 Result of fitting a linear model to training data (see Sala-
ry vs. Age Excel file)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

20 30 40 50 60 70

S
a

la
ry

($
)

Age (years)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

20 30 40 50 60 70

S
a

la
ry

 (
$

)

Age (years)

12 Chapter 1

Table 1.3 summarizes the root mean square errors given by the
three models we have considered. Note that both the linear model and
the quadratic model generalize well to the validation data set, but the
quadratic model is preferred because it is more accurate. By contrast,
the five-degree polynomial model does not generalize well. It over-fits
the training set while the linear model under-fits the training set.

Table 1.3 Root mean square errors (see Excel file)

 Polynomial

of degree 5
Quadratic

model
Linear
model

Training set
(Table 1.1)

12, 902 32,932 49,731

Validation set
(Table 1.2)

38,794 33,554 49,990

How accurate is the quadratic model? We could rely on the results

from the validation set. But we used the validation set to help choose
the best model and so it may overstate the accuracy of the model. We
therefore use the test data set to produce an accuracy measure. This
data set has played no role in analyses so far.

Suppose the test data set results are as shown in Table 1.4. The root
mean squared error for the test set is $34,273. When information about
the performance of the chosen model is presented, it should be based
on results for the test data set, not on those for the validation set or the
training set.

How should the balance between over-fitting and under-fitting be
achieved? This is an important issue in machine learning. Some machine
learning algorithms, such as neural networks (see Chapter 6), can in-
volve a very large number of parameters. It is then easy to over-fit, even
when the training data set is large.

Based on the simple example we have looked at, a rule of thumb
would seem to be as follows:

The complexity of the model should be increased until out-of-
sample tests indicate that it does not generalize well.

Introduction 13

Table 1.4 Errors when quadratic model is applied to the test set

Age (years) Salary ($) Predicted
salary ($)

Error ($)

26 110,000 113,172 −3,172
52 278,000 279,589 −1,589
38 314,000 230,852 +83,148
60 302,000 264,620 +37,380
64 261,000 245,457 +15,543
41 227,000 249325 −22,325
34 200,000 199,411 +589
46 233,000 270,380 −37,380
57 311,000 273,883 −37,117
55 298,000 277,625 +20,375

This rule is illustrated in Figure 1.6. The figure assumes that there is a
continuum of models that get progressively more complex. For each
model, we calculate a measure of the model’s error, such as root mean
square error, for both the training set and the validation set. When the
complexity of the model is less than X, the model generalizes well: the
error of the model for the validation set is only a little more than that
for the training set. As model complexity is increased beyond X, the er-
rors for the validation set start to increase.

Figure 1.6 Errors of a model for the training set and the vali-
dation set.

Model Complexity

Model
Error

Training set

Validation set

X

14 Chapter 1

The best model is the one with model complexity X. This is because
that model has the lowest error for the validation set. A further increase
in complexity lowers errors for the training set but increases them for
the validation set, which is a clear indication of over-fitting.

 Finding the right balance between under-fitting and over-fitting is
referred to as the bias-variance trade-off in machine learning. The bias is
the error due the assumptions in the model that cause it to miss rele-
vant relations. The variance is the error due to the model over-fitting by
reflecting random noise in the training set.

To summarize the points we have made:

 The training set is used to develop alternative models.
 The validation set is used to investigate how well the

models generalize to new data and to choose between the
models.

 The test set is kept back and is used as an out-of-sample
test of the accuracy of the chosen model at the end of the
analysis.

In the simple example we have looked at, the training set, validation

set, and test set had equal numbers of observations. In a typical ma-
chine learning application much more data is available and at least 60%
of it is allocated to the training set while 10% to 20% is allocated to
each of the validation set and the test set.

It is important to emphasize that the data sets in machine learning
involve many more observations that the baby data set we have used in
this section. (Ten observations are obviously insufficient to reliably
learn a relationship.) However, the baby data set does provide a simple
illustration of the bias-variance trade-off.

1.4 Data Cleaning

Data cleaning is a very important, if not terribly exciting, aspect of
machine learning. It has been estimated that data scientists spend 80%
of their time on collecting and cleaning data.5 Large data sets typical-
ly have issues that need to be fixed. Good data cleaning can make all the
difference between successful and unsuccessful machine learning. The

5 See https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-
time-consuming-least-enjoyable-data-science-task-survey-says/#2f8970aa6f63 for
a discussion of this.

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#2f8970aa6f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#2f8970aa6f63

Introduction 15

expression “garbage-in, garbage-out” applies just as much to machine
learning as to other analyses.

At this stage, it is appropriate to point out that there are two types of
data: numerical and categorical. Numerical data consists of numbers.
Categorical data is data which can fall into a number of different catego-
ries. For example, data to predict a house price might categorize drive-
ways as asphalt, concrete, grass, etc. As we will see in Chapter 3, cate-
gorical data must be converted to numbers for the purposes of analysis.

We now list some data cleaning issues and how they can be handled.

Inconsistent Recording
Either numerical or categorical data can be subject to inconsistent

recording. For example, numerical data for the square footage of a
house might be input manually as 3300, 3,300, 3,300 ft, or 3300+, and
so on. It is necessary to inspect the data to determine variations and
decide the best approach to cleaning. Categorical data might list the
driveway as “asphalt”, “Asphalt”, or even “aphalt.” The simplest ap-
proach here is to list the alternatives that have been input for a particu-
lar feature and merge them as appropriate.

Unwanted Observations
If you are developing a model to predict house prices in a certain ar-

ea, some of your data might refer to the prices of apartments or to the
prices of houses that are not in the area of interest. It is important to
find a way of identifying this data and removing it before any analysis is
attempted.

Duplicate Observations
When data is merged from several different sources or several dif-

ferent people have been involved in creating a data set there are liable
to be duplicate observations. These can bias results. It is therefore im-
portant to use a search algorithm to identify and remove duplicates as
far as possible.

Outliers
In the case of numerical data, outliers can be identified by either

plotting data or searching for data that is, say, six standard deviations
away from the mean. Sometimes it is clear that the outlier is a typo. For
example, if the square footage of a house with three bedrooms is input

16 Chapter 1

as 33,000, it is almost certainly a typo and should probably be 3,300.
However, outliers should be removed only if there is a good reason for
doing so. Unusually large or small values for features or targets, if cor-
rect, are likely to contain useful information. The impact of outliers on
the results of machine learning depends on the model being used. Outli-
ers tend to have a big effect on regression models such as those consid-
ered in Chapter 3. Other models, such as those involving decision trees
(which will be explained in Chapter 4) are less influenced by outliers.

Missing Data
In any large data set there are likely to be missing data values. A

simple approach is to remove data with missing values for one or more
features. But this is probably undesirable because it reduces the sample
size and may create biases. In the case of categorical data, a simple solu-
tion is to create a new category titled “Missing.” In the case of numerical
data, one approach is to replace the missing data by the mean or median
of the non-missing data values. For example, if the square footage of a
house is missing and we calculate the median square footage for the
houses for which this data is available to be 3,500, we could populate all
the missing values with 3,500. More sophisticated approaches can in-
volve regressing the target against non-missing values and then using
the results to populate missing values. Sometimes it is reasonable to
assume that data is missing at random and sometimes the very fact that
data is missing is itself informative. In the latter case it can be desirable
to create a new indicator variable which is zero if the data is present
and one if it is missing.

1.5 Bayes’ Theorem

Sometimes in machine learning we are interested in estimating the
probability of an outcome from data. The outcome might be a customer
defaulting on a loan or a transaction proving to be fraudulent. Typically
there is an initial probability of the outcome. When data is received, the
probability is updated to be a probability conditional on the data. A re-
sult known as Bayes’ theorem is sometimes useful for calculating condi-
tional probabilities.

Thomas Bayes discovered Bayes’ theorem in about 1760. We will
write P(X) as the probability of event X happening and 𝑃(𝑌|𝑋) as the
probability of event Y happening conditional that event X has happened.
Bayes’ theorem states that

Introduction 17

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
 (1.1)

The proof of Bayes’ theorem is straightforward. From the meaning of

conditional probabilities:

𝑃(𝑌|𝑋) =
𝑃(𝑋 and 𝑌)

𝑃(𝑋)

and

𝑃(𝑋|𝑌) =
𝑃(𝑋 and 𝑌)

𝑃(𝑌)

Substituting for 𝑃(𝑋 and 𝑌) from the second of these equations into the
first leads to the Bayes’ theorem result in equation (1.1).

For an application of Bayes’ theorem, suppose that a bank is trying
to identify customers who are attempting to do fraudulent transactions
at branches. It observes that 90% of fraudulent transactions involve
over $100,000 and occur between 4pm and 5pm. In total, only 1% of
transactions are fraudulent and 3% of all transactions involve over
$100,000 and occur between 4pm and 5pm.

In this case we define:

X: transaction occurring between 4pm and 5pm involving over

$100,000
Y: fraudulent transaction

We know that P(Y) = 0.01, 𝑃(𝑋|𝑌) = 0.9, and P(X) = 0.03. From Bayes’

theorem:

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
 =

0.9 × 0.01

0.03
= 0.3

The probability of a random transaction being fraudulent transac-

tion is only 1%. But when it is known that the transaction is undertaken
between 4pm and 5pm and involves over $100,000, Bayes’ theorem
shows that this probability should be updated to 30%. The implications
of this are clear. If the bank has an on-line approval system for transac-
tions, it should not approve transactions between 4pm and 5pm where
over $100,000 is involved without further investigation.

Effectively what Bayes’ theorem allows one to do is to invert the
conditionality when probabilities are measured. Sometimes this prod-

18 Chapter 1

uces counterintuitive results. Suppose that a test for a certain disease is
“99% accurate.” By this it is usually meant that, when a person has the
disease, it gives a positive result (i.e., it predicts that the person has the
disease) 99% of the time. We also assume that, when a person does not
have the disease, it gives a negative result (i.e., it predicts that the per-
son does not have the disease) 99% of the time.6 Suppose that the dis-
ease is rare so that the (unconditional) probability of an individual hav-
ing the disease is one in 10,000. If you are tested positive, what is the
probability that you have the disease?

A natural response to this question is 99%. (After all, the test is 99%
accurate.) However, this is confusing the conditionality. Suppose that X
indicates that the test is positive and Y indicates that a person has the
disease. We are interested in 𝑃(𝑌|𝑋). We know that 𝑃(𝑋|𝑌) = 0.99. We

also know that P(Y) = 0.0001. Let us extend our notation so that X in-

dicates that the test result is negative and Y indicates that the person
does not have the disease. We also know that

𝑃(𝑌̅) = 0.9999

and

𝑃(𝑋̅|𝑌̅) = 0.99

Because either X or X is true 𝑃(𝑋̅|𝑌̅) + 𝑃(𝑋|𝑌̅) = 1 so that

𝑃(𝑋|𝑌̅) = 0.01

and we can calculate the probability of a positive test result as

𝑃(𝑋) = 𝑃(𝑋|𝑌)𝑃(𝑌) + 𝑃(𝑋|𝑌̅)𝑃(𝑌̅)

 = 0.99 × 0.0001 + 0.01 × 0.9999 = 0.0101

Using the Bayes’ theorem result in equation (1.1),

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
 =

0.99 × 0.0001

0.0101
= 0.0098

6 It does not have to be the case that that the accuracy measure is the same for posi-
tive and negative test results.

Introduction 19

This shows that there is a less than 1% chance that you have the dis-
ease if you get a positive test result. The test result increases the proba-
bility that you have the disease from the unconditional 0.0001 by a fac-
tor of about 98 but the probability is still low. The key point here is that
“accuracy" is defined as the probability of getting the right result condi-
tional that a person has the disease, not the other way round.

We will use Bayes’ theorem to explain a popular tool known as the
naïve Bayes classifier in Chapter 4 and use it in natural language pro-
cessing in Chapter 8.

Summary

Machine learning is a branch of artificial intelligence concerned with

learning from big data sets. It involves developing algorithms to make
predictions, cluster data, or develop a strategy for making a series of
decisions.

Statistical analysis has traditionally involved forming a hypothesis
(without looking at data) and then testing the hypothesis with data. Ma-
chine learning is different. There is no hypothesis. The model is derived
entirely from data.

Before using any machine learning algorithms, it is important to
clean the data. The features constituting the data are either numerical
or categorical. In either case there may be inconsistencies in the way
the data has been input. These inconsistencies need to be identified and
corrected. Some observations may be irrelevant to the task at hand and
should be removed. The data should be checked for duplicate observa-
tions that can create biases. Outliers that are clearly a result of input
errors should be removed. Finally, missing data must be dealt with in a
way that will not bias the results.

Bayes’ theorem is a result that is sometimes used when it is neces-
sary to quantify uncertainty. It is a way of inverting conditionality. Sup-
pose we are interested in knowing the probability of an event Y occur-
ring and can observe whether another related event X happens. Sup-
pose also that from experience we know the probability of X happening
when Y happens. Bayes’ theorem allows us to calculate the probability
of Y conditional on X.

20 Chapter 1

As mentioned in this chapter, machine learning has its own termi-
nology which is different from that traditionally used in statistics. We
close this chapter by summarizing the new terminology that has been
introduced so far. A feature is a variable on which we have observa-
tions. Each observation is referred to as an instance. A target is a varia-
ble about which we want to make predictions. Labels are observations
on the target. Supervised learning is a type of machine learning where
we use data on the features and targets to predict the target for new
data. Unsupervised learning is where we attempt to find patterns in data
to help us understand its structure. (There is no target and therefore
there are no labels in unsupervised learning). Semi-supervised learning
involves making predictions about a target from data that is partly la-
beled (so that values of the target are provided) and partly unlabeled
(so that values of the target are not provided). Finally, reinforcement
learning is concerned with producing algorithms for sequential decision
making where the decision maker is interacting with a changing envi-
ronment. Other terminology will be introduced as the book progresses.

SHORT CONCEPT QUESTIONS

1.1 What is the difference between machine learning and artificial
intelligence?

1.2 Explain two types of predictions that are made in supervised
learning.

1.3 When is unsupervised learning appropriate?
1.4 When is reinforcement learning appropriate?
1.5 When is semi-supervised learning appropriate?
1.6 How can you tell whether a machine learning model is over-

fitting data?
1.7 Explain the role of the validation data set and the test data set.
1.8 What is meant by a categorical feature?
1.9 What is meant by the bias-variance trade-off? Does the linear

model in Figure 1.5 give a bias error or a variance error? Does the
fifth-order-polynomial model in Figure 1.2 give a bias error or a
variance error?

1.10 List five different types of data cleaning.
1.11 “Bayes’ theorem allows one to invert the conditionality.” What is

meant by this statement?

Introduction 21

EXERCISES

1.12 How well do polynomials of degree 3 and 4 work for the data on

salary vs. age in Section 1.3.? Consider whether the best fit model
generalizes well from the training set to the validation set.

1.13 Suppose that 25% of emails are spam and it is found that spam
contains a particular word 40% of the time. Overall only 12.5% of
the emails contain the word. What is the probability of an email
being spam when it contains the word?

23

Chapter 2

Unsupervised Learning

As explained in Chapter 1, unsupervised learning is concerned with

identifying patterns in data. The immediate objective is not to predict
the value of a target variable. Rather it is to understand the structure of
data and find clusters. This is a useful exercise for many businesses.
Banks, for example, often use unsupervised learning to cluster their
customers so that they can communicate with them better and provide
an improved level of service. One cluster might be young couples who
are likely to want a mortgage soon. Another might be what are termed
HENRYs (High Earners, Not Rich Yet). These are families earning bet-
ween $250,000 and $500,000 who may be in the market for wealth
management services.

This chapter explains a popular clustering procedure known as the
k-means algorithm. It illustrates the algorithm by clustering countries
according to their risk from the perspective of a foreign investor. Data
on 122 countries and four features are used. The features are the real
GDP growth rate, a corruption index, a peace index, and a legal risk in-
dex. The chapter then mentions some alternative algorithms and ex-
plains principal components analysis, which is a useful tool for both su-
per-vised and unsupervised learning.

24 Chapter 2

2.1 Feature Scaling

Before covering clustering algorithms, it is appropriate to discuss

what is known as feature scaling. This is also referred to as the normali-
zation or standardization of data. It is a necessary first step to for many
machine learning algorithms, including the k-means algorithm. The
purpose of feature scaling is to ensure that the features are given equal
importance in an algorithm. Suppose for example that we are clustering
men according to two features: height in inches and weight in pounds.
Heights might range from 60 to 80 inches while weights range from 100
to 350 pounds. Without feature scaling, the two features will not be
treated with equal importance because the range of heights is much less
than the range of weights (20 inches vs 250 pounds).

One approach to feature scaling is to calculate the mean and stand-
ard deviation of each feature and scale observations on the feature by
subtracting the mean and dividing by the standard deviation. If V is a
feature value for a particular observation,

 Scaled Feature Value =




V

where  and  are the mean and standard deviation calculated from
observations on the feature. This method of feature scaling is some-
times referred to as Z-score scaling or Z-score normalization. The scaled
features have means equal to zero and standard deviations equal to one.
If we want a particular feature to have more effect than other features
in determining cluster separation, we could scale it so that its standard
deviation is greater than one.

An alternative approach to feature scaling is to subtract the mini-
mum feature value and divide by the difference between the maximum
and minimum values so that:





min
Scaled Feature Value =

max min

V

where max and min denote the maximum and minimum feature values.
This is referred to as min-max scaling. The scaled feature values lie be-
tween zero and one.

Unsupervised Learning 25

Scaling using the Z-score method is usually preferred because it is
less sensitive to extreme values, but it can make sense to use min-max
scaling when features have been measured on bounded scales. In our
description of the k-means algorithm in the rest of this chapter, we as-
sume that feature values have been scaled using one of the two methods
we have described.

The usual approach is to use the training data set to define the scal-
ing parameters (i.e., the means and standard deviations of features or
their minimums and maximums). The scaling defined by the training set
is then applied to the validation set and the test set as well to new data.

2.2 The k-Means Algorithm

To cluster observations we need a distance measure. Suppose first

that there are only two features, x and y, so that we can plot the obser-
vations on a two-dimensional chart. Consider the two observations, A
and B, in Figure 2.1. A natural distance measure is the Euclidean dis-
tance. This is the length of the straight line AB. Suppose that for obser-
vation A, x = xA and y = yA, while for observation B, x = xB and y = yB. The
Euclidean distance between A and B (using Pythagoras’ theorem) is

√(𝑥A − 𝑥B)2 + (𝑦A − 𝑦B)2

This distance measure can be extended to many dimensions. Sup-

pose we have observations on m features and that the value of the jth

feature for the ith observation is .i jv The distance between the pth ob-

servation and the qth observation is

 
2

1

m

p j q jj
v v




The extension from two features to three features is fairly easy to

understand. It involves measuring the distance in three dimensions ra-
ther than two. Imagining distances when m > 3 is not so easy, but the
formula is a natural extension of that for one, two, and three dimen-
sions.

26 Chapter 2

Figure 2.1 The Euclidean distance between observations A and B, with
co-ordinates (xA, yA) and (xB, yB), is the length of the line AB.

Another concept we need in order to understand the k-means algo-
rithm is the center of a cluster (sometimes referred to as the cluster’s
centroid). Suppose that a certain set of observations is regarded as a
cluster. The center is calculated by averaging the values of each of the
features for the observations in the cluster. Suppose there are four fea-
tures and the five observations in Table 2.1 are considered to be a clus-
ter. The center of the cluster is a point that has values of 0.914, 0.990,
0.316, and 0.330 for features 1, 2, 3, and 4, respectively. (For example,
0.914 is the average of 1.00, 0.80, 0.82, 1.10, and 0.85.) The distance
between each observation and the center of the cluster (shown in the
final column of Table 2.1) is calculated in the same way as the distance
between A and B in Figure 2.1. For example, the distance of the first ob-
servation from the center of the cluster is

√(1.00 − 0.914)2 + (1.00 − 0.990)2 + (0.40 − 0.316)2 + (0.25 − 0.330)2

which equals 0.145.

Feature y

A

B

 A B

 A

 B

Feature x

Unsupervised Learning 27

Table 2.1 Calculation of the center of a cluster of five observations on
four features.

Observ-
ation

Feature
1

Feature
2

Feature
3

Feature
4

Distance
to center

1 1.00 1.00 0.40 0.25 0.145
2 0.80 1.20 0.25 0.40 0.258
3 0.82 1.05 0.35 0.50 0.206
4 1.10 0.80 0.21 0.23 0.303
5 0.85 0.90 0.37 0.27 0.137

Center 0.914 0.990 0.316 0.330

Figure 2.2 illustrates how the k-means algorithm works. The first
step is to choose k, the number of clusters (more on this later). We then
randomly choose k points for the centers of the clusters. The distance of
each observation from each cluster center is calculated as indicated
above and observations are assigned to the nearest cluster center. This
produces a first division of the observations into k clusters. We then
compute new centers for each of the clusters, as indicated in Figure 2.2.
The distances of each observation from the new cluster centers is then
computed and the observations are re-assigned to the nearest cluster
center. We then compute new centers for each of the clusters and con-
tinue in this fashion until the clusters do not change.

Figure 2.2 The k-means algorithm

Assign each observation to
nearest cluster center

Choose k random points as
cluster centers

Calculate new cluster
centers

Have cluster
centers changed?NoEnd Yes

28 Chapter 2

A measure of the performance of the algorithm is the within-cluster
sum of squares, also known as the inertia. Define di as the distance of
the ith observation from the center of the cluster to which it belongs.
Then:

 Inertia = Within-cluster sum of squares = ∑ 𝑑𝑖
2𝑛

𝑖=1

where n is the number of observations. For any given value of k, the ob-
jective of the k-means algorithm should be to minimize the inertia. The
results from one run of the algorithm may depend on the initial cluster
centers that are chosen. It is therefore necessary to re-run the algorithm
many times with different initial cluster centers. The best result across
all runs is the one for which the inertia is least.

Generally, the inertia decreases as k increases. In the limit when k
equals the number of observations there is one cluster for each obser-
vation and the inertia is zero.

2.3 Choosing k

In some cases, the choice of k may depend on the objective of the

clustering. For example, a company that is planning to produce small,
medium, large, and extra-large sweaters for men might collect data on
various relevant features (arm length, shoulder width, chest measure-
ment, etc.) for a random sample of men and then create four clusters to
help with product design. In other situations, the user of the algorithm
may not have any preconceived ideas about k and just want to optimally
group each observation with other similar observations.

The elbow method is a popular approach for determining the number
of clusters. The k-means algorithm is carried out for a range of values of
k (e.g., all values between 1 and 10). The inertia is then plotted against
the number of clusters as indicated in Figure 2.3. The slope of the line
in this chart indicates how the within-cluster sum of squares declines as
the number of clusters increases. In this example, the decline is quite
large when we move from one to two, two to three, and three to four
clusters. After four clusters, the decline is much smaller. We conclude
that the optimal number of clusters is four.

In addition to the within-cluster sum of squares, we are likely to be
interested in how distinct the clusters are. If two clusters are very close
together we might reasonably conclude that not much is gained by
keeping them separate. Analysts therefore often monitor the distance

Unsupervised Learning 29

between cluster centers. If changing the number of clusters from k to
𝑘 + 1 leads to two clusters with centers that are very close to each oth-
er, it might be considered best not to make the change.

Figure 2.3 Application of the elbow method. The inertia (within-
cluster sum of squares) is plotted against the number of clusters

A less subjective way of choosing the number of clusters is the sil-
houette method. Again, we carry out the k-means algorithm for a range
of values of k. For each value of k, we calculate for each observation, i,
the average distance between the observation and the other observa-
tions in the cluster to which it belongs. Define this as a(i). We also calcu-
late, for each of the other clusters, the average distance between the
observation and the observations in that cluster. We define b(i) as the
minimum value of these average distances across all the other clusters.
We expect b(i) to be greater than a(i) as otherwise it probably would
have made sense to allocate observation i to a different cluster. The sil-
houette of an observation measures the extent to which b(i) is greater
than a(i). It is1

1 See L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction to Clus-
ter Analysis, Wiley 1990.

1 2 3 4 5 6 7 8 9

In
e

rt
ia

Number of Clusters

30 Chapter 2

() ()
()

max[(), ()]

b i a i
s i

a i b i




The silhouette, s(i), lies between −1 and +1. (As already indicated, for

observations that have been allocated correctly it is likely to be posi-
tive.) As it becomes closer to +1, the observation more clearly belongs
to the group to which it has been assigned. The average of s(i) over all
observations in a cluster is a measure of the tightness of the grouping of
those observations. The average of s(i) over all observations in all clus-
ters is an overall measure of the appropriateness of the clustering and is
referred to as the average silhouette score. If for a particular data set
the average silhouette scores are 0.70, 0.53, 0.65, 0.52, and 0.45 for k =
2, 3, 4, 5, and 6, respectively, we would conclude that k = 2 and 4 are
better choices for the number of clusters than k = 3, 5, and 6.

Yet another approach for choosing k, known as the gap statistic, was
suggested by Tibshirani et al (2001).2 In this, the within-cluster sum of
squares is compared with the value we would expect under the null hy-
pothesis that the observations are created randomly. We create N sets
of random points and, for each value of k that is considered, we cluster
each set, calculating the within-cluster sum of squares. (N=500 usually
works well.) Define

mk: the mean of the within-cluster sum of squares for randomly

created data when there are k clusters
 sk: the standard deviation of the within-cluster sum of squares

for randomly created data when there are k clusters
wk: the within-cluster sum of squares for the data we are con-

sidering when there are k clusters

We set

Gap(k)= mk−wk

This is the difference between the within-cluster sum of squares statist-
ic for the random data and the data of interest. It is argued that the best
choice for k is the smallest value such that Gap(k) is within sk+1 of
Gap(k+1).

2 See R. Tibshirani, G. Walther, and T. Hastie (2001), “Estimating the number of clus-
ters in a data set via the gap statistic,” Journal of the Royal Statistical Society, B, 63,
Part 2: 411-423.

Unsupervised Learning 31

2.4 The Curse of Dimensionality

As the number of features increases, the k-means algorithm becomes

affected by what is known as the “curse of dimensionality.” Distances
between observations increase. Consider the Euclidean distance be-
tween a point where all features equal 1.0 and a point where all fea-
tures equal 0.0. When there is one feature the distance is 1.0; when

there are two features the distance is √2 or 1.4; when there are three

features, it is √3 or 1.7; when then are 100 features it is 10; and when
there are 1,000 features it is 31.6. One consequence of this is that we
cannot compare a within-cluster sum of squares given by data with a
small number of features to one given by data with a large number of
features.

Another problem is that, as the number of features increases, the
distance measure that we have defined does not always differentiate
well between observations that are close and those that are far apart. As
a result the k-means algorithm works less well. This has led some users
of the algorithm to search for alternatives to the Euclidean distance
measure.

The Euclidean distance between an observation where feature j is xj
and another observation where feature j is yj can be written

√∑ (𝑥𝑗 − 𝑦𝑗)
2𝑚

𝑗=1

One alternative is

1

2 2

1 1

1

m

j jj

m m

j jj j

x y

x y



 




 

This always lies between 0 and 2.

2.5 Country Risk

Consider the problem of understanding the risk of countries for for-

eign investment. Among the features that can be used for this are:

32 Chapter 2

1. The real GDP growth rate (using data from the International
Monetary Fund)

2. A corruption index (produced by Transparency International)
3. A peace index (produced by Institute for Economics and Peace)
4. A legal risk index (produced by Property Rights Association)

Values for each of these features for 122 countries and all analyses

carried out are at www-2.rotman.utoronto.ca/~hull. Table 2.2 provides
an extract from the data. The table shows the importance of feature
scaling (see Section 2.1). The real GDP growth rate (%) is typically a
positive or negative number with a magnitude less than 10. The corrup-
tion index is on a scale from 0 (highly corrupt) to 100 (no corruption).
The peace index is on a scale from 1 (very peaceful) to 5 (not at all
peaceful). The legal risk index runs from 0 to 10 (with high values being
favorable). Table 2.3 shows the data in Table 2.2 after it has been scaled
using Z-score normalization. It shows that Australia’s real GDP growth
rate is slightly above average and its corruption index is 1.71 standard
deviations above the average. Its peace index is 1.20 standard devia-
tions below average (but low peace indices are good) and the legal risk
index is 1.78 standard deviations above the average.

Table 2.2 First few observations for clustering countries according to
their risk for international investment (see csv file)

Country Real GDP
growth rate
(% per yr)

Corruption
index

Peace
index

Legal risk
index

Albania 3.403 39 1.867 3.822
Algeria 4.202 34 2.213 4.160
Argentina −2.298 36 1.957 4.568
Armenia 0.208 33 2.218 4.126
Australia 2.471 79 1.465 8.244
Austria 1.482 75 1.278 8.012
Azerbaijan −3.772 30 2.450 3.946

 Once the data has been scaled, a natural next step, given that there
are only four features, is to examine the features in pairs with a series of
scatter plots. This reveals that the corruption index and legal risk index
are highly correlated as shown in Figure 2.4. (This is perhaps not sur-
prising. Corruption is likely to be more prevalent in countries where
the legal systems are poor.) We therefore eliminate the corruption

Unsupervised Learning 33

index as the information it provides is largely captured by the legal risk
index. This means that we can consider our data as being points in
three-dimensional space, the dimensions being: real GDP growth rate,
peace index, and legal risk index

Table 2.3 Data in Table 2.2 after using Z-score scaling (see Excel file)

Country Real GDP
growth rate
(% per yr)

Corruption
index

Peace
index

Legal risk
index

Albania 0.32 −0.38 −0.31 −1.20
Algeria 0.56 −0.64 0.47 −0.97
Argentina −1.44 −0.54 −0.10 −0.69
Armenia −0.67 −0.69 0.48 −0.99
Australia 0.03 1.71 −1.20 1.78
Austria −0.27 1.50 −1.62 1.62
Azerbaijan −1.90 −0.85 1.00 −1.11

Figure 2.4 Scatter plot of scaled legal risk index and corruption index
(see Excel file)

Figure 2.5 shows the results of applying the k-means algorithm to

the country risk data when three features (real GDP growth rate, peace
index, and legal risk index) are used. As expected, the total within-
cluster sum of squares declines as the number of clusters, k, is in-
creased. As explained earlier we can use the figure to look for an elbow,

-3

-2

-1

0

1

2

3

-2 -1 0 1 2 3

Corruption Index

Legal Risk
Index

34 Chapter 2

a point where the benefit from increasing the number of clusters starts
to be relatively small. The elbow is not as pronounced in Figure 2.5 as it
is in Figure 2.3. However, a case can be made for three clusters as the
decrease in the inertia as we move from one to two and two to three
clusters is quite a bit greater than when we move from three to four
clusters.

Figure 2.5 Variation of inertia (within-cluster sum of squares) with
number of clusters for country risk example (from Python output)

The results from the silhouette method are given in Table 2.4. It can

be seen that the average silhouette score is greatest when the number
of clusters is three. For this particular data set, both the elbow method
and the silhouette method point to the use of three clusters.3

Table 2.5 shows the cluster centers after scaling. It shows that high-
risk countries are on average over one standard deviation worse than
the mean for all three features. (Remember, high values are bad for the
peace index.) Tables 2.6, 2.7, and 2.8 give the allocation of countries to
three clusters.

3 The elbow method and the silhouette method do not always agree.

0

100

200

300

400

1 2 3 4 5 6 7 8 9

In
e

rt
ia

Number of Clusters

Unsupervised Learning 35

Table 2.4 Variation of the average silhouette score with the number of
clusters (from Python output)

Number of

clusters
Average silhouette

Score
2 0.363
3 0.388
4 0.370
5 0.309
6 0.303
7 0.315
8 0.321
9 0.292

10 0.305

Table 2.5 Cluster centers after features have been scaled so that mean
is zero and standard deviation is one (from Python output)

 Peace index Legal index Real GDP growth

rate
High risk 1.39 −1.04 −1.79

Moderate risk 0.27 −0.45 0.36
Low risk −0.97 1.17 0.00

Table 2.6 High-risk countries (from Python output)

Argentina Lebanon

Azerbaijan Nigeria

Brazil Russia

Burundi Trinidad and Tobago

Chad Ukraine
Democratic Republic of Congo Venezuela
Ecuador Yemen

36 Chapter 2

Table 2.7 Moderate-risk countries (from Python output)

Albania Madagascar

Algeria Malawi

Armenia Mali

Bahrain Mauritania

Bangladesh Mexico

Benin Moldova

Bolivia Montenegro

Bosnia and Herzegovina Morocco

Bulgaria Mozambique

Cameroon Nepal

China Nicaragua

Colombia Oman

Croatia Pakistan

Cyprus Panama

Dominican Republic Paraguay

Egypt Peru

El Salvador Philippines

Ethiopia Romania

Gabon Rwanda

Georgia Saudi Arabia

Ghana Senegal

Greece Serbia

Guatemala Sierra Leone

Honduras South Africa

India Sri Lanka

Indonesia Tanzania

Iran Thailand

Israel The FYR of Macedonia

Jamaica Tunisia

Jordan Turkey

Kazakhstan Uganda

Kenya Vietnam

Kuwait Zambia

Latvia Zimbabwe

Liberia

Unsupervised Learning 37

Table 2.8 Low-risk countries (from Python output)

2.6 Alternative Clustering Approaches

The k-means algorithm is the most popular approach to clustering,
but there are alternatives. One is agglomerative hierarchical clustering.
This involves the following steps:

1. Start with each observation in its own cluster

2. Combine the two closest clusters

3. Repeat step 2 until all observations are in single cluster

The advantage of this approach is that the clusters form a hierarchy
so that we can see clusters within clusters. The hierarchy can be used to
obtain exactly k clusters for any given value of k between one and the
number of observations. Its disadvantage is that it tends to be computa-
tionally very time consuming when there are a large number of obser-
vations.

Australia Malaysia

Austria Mauritius

Belgium Netherlands

Botswana New Zealand

Canada Norway

Chile Poland

Costa Rica Portugal

Czech Republic Qatar

Denmark Singapore

Estonia Slovakia

Finland Slovenia

France Spain

Germany Sweden

Hungary Switzerland

Iceland Taiwan

Ireland United Arab Emirates

Italy United Kingdom

Japan United States

Korea (South) Uruguay

Lithuania

38 Chapter 2

A number of different measures of closeness between two clusters, A
and B, have been proposed for use in step 2. One is the average Euclide-
an distance between an observation in cluster A and an observation in
cluster B. Alternatively, we can use the minimum of these distances or
the maximum of them. Another measure (a version of what is known as
Ward’s method) equals the increase in inertia when two clusters are
combined. Whatever the measure chosen, step 2 involves searching for
the two clusters with the smallest measure and then combining them.

Sometimes clusters are estimated from assumed statistical distribu-
tions. This is known as distribution-based clustering. Suppose for sim-
plicity that there is only one feature and that the observations exhibit
the probability distribution shown in Figure 2.6. We might reasonably
assume that the observations come from a mixture of two normal dis-
tributions. This is a distribution when there is a probability p that an
observation comes from a normal distribution with a particular mean
and standard deviation and a probability 1−p that it comes from anoth-
er normal distribution with a different mean and standard deviation.
Statistical tools can be used to distinguish between the two distribu-
tions and therefore identify two clusters. A similar exercise can be car-
ried out when there are several features and more than two distribu-
tions.

Figure 2.6 Probability distribution for data on a feature from which
two normally distributed clusters could be separated

Unsupervised Learning 39

Density-based clustering involves forming clusters according to the
closeness of individual observations. We might initially form a cluster of
eight observations that are close to each other, then add another obser-
vation to the cluster that is close to at least five of these observations,
then add another observation that is close to at least five of the observa-
tions in the new cluster, and so on. This can lead to clusters that have
quite different shapes from the ones considered by the k-means algo-
rithm. Figure 2.7 gives two examples. The k-means algorithm would not
find these clusters because of the way it uses cluster centers. The two
clusters in Figure 2.7a have the same centers and would therefore not
be distinguished by k-means. In Figure 2.7b, k-means might identify
several clusters but not the ones that are visually obvious.

 Figure 2.7 Clusters which might be identified by a density-based clus-
tering algorithm

(a) (b)

2.7 Principal Components Analysis

As an alternative to clustering, we can use principal components

analysis (PCA) to understand the structure of data.4 This takes data on
m features and replaces it with a new set of m variables, referred to as
factors or principal components, so that:

4 PCA was proposed by Karl Pearson as early as 1901: K. Pearson (1901), “On lines
and planes of closest fit to systems on points in space,” Philosophical Magazine,
2(11): 559−572.

40 Chapter 2

 Any observation on features is a linear combination of the fac-
tors

 The m factors are uncorrelated

PCA works best on normalized data. The first factor accounts for as
much of the variability in the data as possible. Each succeeding factor
then accounts for as much of the remaining variability in the data sub-
ject to the condition that it is uncorrelated to preceding factors. The
quantity of a particular factor in a particular observation is the factor
score.

A principal components analysis is often carried out for interest rate
movements. (This could be relevant to a data scientist who is interested
in studying the effect of interest rates on consumer behavior.) Table 2.9
shows the first three factors that are obtained when principal compo-
nents analysis is applied to daily movements in interest rates with ma-
turities of 1, 2, 3, 4, 5, 7, 10, and 30 years over a 12-year time period.5
The numbers in each column are referred to as factor loadings and have
the property that their sum of squares is 1. All rates move in the same
direction for the first factor (principal component one, PC1). If we have
+10 basis point units of that factor, the one-year rate increases by 2.16
basis points (or 0.0216%), the two-year rate increases by 3.31 basis
points, and so on. If we have −20 basis point units of the first factor the
one-year rate decreases by 4.32 basis points, the two-year rate decreas-
es by 6.62 basis points, and so on.

PC2 is different from PC1 in that the first four rates move in one di-
rection while the next four rates move in the opposite direction. This
provides a “twist” to the term structure of interest rates where the
slope changes. In PC3 short and long rates move in one direction while
intermediate rates move in the other direction. This is referred to as a
“bowing” of the term structure.

The importance of factors is measured by the standard deviations of
their factors score across the observations. These are shown in Table
2.10 for the first three factors in our interest rate example. The variance
accounted for by all eight factor scores is 388.8 in this example. The
fraction of the variance accounted for by the first (most important) fac-
tor is therefore

5 See J. Hull, Options, Futures, and Other Derivatives, 10th edition, Pearson, page 513
for this example. The worksheet for this is under the principal components analysis
tab at

www-2.rotman.utoronto.ca/~hull/ofod

Unsupervised Learning 41

217 55

338 8

.

.

or about 90%. The fraction accounted for by the first two factors is

2 217 55 4 77

338 8

. .

.



or about 97%. This shows that replacing the eight features defining
term structure movements by two new variables (PC1 and PC2) cap-
tures most of the variation in the data. This illustrates what we are try-
ing to achieve with PCA. We are trying to find a small number of varia-
bles that capture the structure of the data.

Table 2.9 Factor loadings defining the principal components for inter-
est rate movements

Maturity PC1 PC2 PC3

1yr 0.216 −0.501 0.627
2yr 0.331 −0.429 0.129
3yr 0.372 −0.267 −0.157
4yr 0.392 −0.110 −0.256
5yr 0.404 0.019 −0.355
7yr 0.394 0.194 −0.195

10yr 0.376 0.371 0.068
30yr 0.305 0.554 0.575

Table 2.10 Standard deviation of factor scores for interest rates (in
basis points)

PC1 PC2 PC3

17.55 4.77 2.08

For a further example of PCA we return to the country risk data that
we considered in Section 2.5. When all four features are used, the fac-
tors and the factor scores are shown in Tables 2.11 and 2.12. These re-
veal some interesting properties of the data. The first factor which ac-
counts for 64% of the variance places roughly equal weight on corrup-
tion, peace, and legal risk. (Remember that a low score for peace is

42 Chapter 2

good.)
The second factor accounts for a further 24% of the variance and

places most of the weight on the real GDP growth rate. This recognizes
that the real GDP growth rate is giving quite different information from
the other three features.

In interpreting Table 2.11, note that we can change the signs of all
the factor loadings in a column without changing the model. This is be-
cause the number of units of a factor that are present in an observation
can be positive or negative. We should not for example read anything
into the negative factor loading for the real GDP growth rate in PC2. We
could change the signs of all the factor loadings for PC2 without chang-
ing the model.

Table 2.11 Factor loadings showing principal components for the
country risk data (see Excel PCA file)

 PC1 PC2 PC3 PC4

Corruption index 0.594 0.154 −0.292 −0.733
Peace index -0.530 0.041 −0.842 −0.086
Legal risk index 0.585 0.136 −0.431 0.674
GDP growth rate 0.152 −0.978 −0.141 −0.026

Table 2.12 Standard deviation of factor scores for country risk data
(see Excel PCA file)

PC1 PC2 PC3 PC4

1.600 0.988 0.625 0.270

The third factor which accounts for about 10% of the variance places

most weight on the peace index and suggests that this has extra infor-
mation over that in corruption and legal risk. The fourth factor is rela-
tively unimportant, accounting for less than 2% of the variance. The
PCA confirms the result in Figure 2.4 that the corruption index and legal
risk index provide similar information.

PCA is sometimes used in supervised learning as well as unsuper-
vised learning. We can use it to replace a long list of features by a much
smaller list of manufactured features derived from a PCA. The manufac-
tured features are chosen so that they account for most of the variabil-
ity in the data we are using for prediction and have the nice property
that they are uncorrelated.

Unsupervised Learning 43

Finally, we emphasize that, when clustering or using PCA, we are not
trying to predict anything. We are merely investigating the structure of
the data. In our country risk example, an analyst might assume that the
features are related to investment risk, but there is no guarantee that
this is so. (For example, we have not tried to relate the features to losses
incurred on investments in different countries, as we might do in su-
pervised learning.)

Summary

Unsupervised learning is concerned with understanding patterns

within data. Typically, it involves looking for clusters, i.e., groups of sim-
ilar observations. Companies often use unsupervised learning to under-
stand the different types of customers they have so that they can com-
municate with them more effectively.

Feature scaling is usually necessary for clustering. Without feature
scaling, the impact of a feature on clustering is likely to depend on the
scale used to measure it. There are two main approaches to feature scal-
ing. One is Z-score normalization where features are scaled so that they
have a mean of zero and a standard deviation of one. The other is the
min-max method where all features are scaled so that they have values
between zero and one.

A clustering algorithm requires a distance measure. The most popu-
lar such measure is the Euclidean distance, which is the square root of
the sum of squared differences between feature values. A cluster’s cen-
ter is the point obtained by averaging the feature values for all observa-
tions in the cluster. The most popular clustering algorithm is k-means.
For a particular value of k (the number of clusters), it minimizes inertia,
which is defined as the total sum of squared distances of the observa-
tions from their cluster centers.

Choosing the best value for the number of clusters, k, is not always
easy. One approach is the “elbow method” which involves continuing to
increase k until the improvement in the inertia is relatively small. An-
other approach is the silhouette method which compares for each ob-
servation (a) the average distance of the observation from other points
in its own cluster and (b) the average distance of the observation from
points in the closest other cluster. A third approach involves calculating
the gap statistic which compares the clustered observations to observa-
tions that are created randomly.

44 Chapter 2

As the number of features increases, the Euclidean distance measure
increases. This is an aspect of the curse of dimensionality and makes it
more difficult to use the k-means algorithm when there are a large
number of features. As a result, it may be desirable to change the dis-
tance measure so that it stays within certain bounds as the number of
features increases.

There are a number of alternatives to the k-means algorithm. One is
hierarchical clustering. In this we start with the situation where each
observation is in its own cluster. We then slowly reduce the number of
clusters by combining clusters that are close to each other. Distribution-
based clustering involves assuming a distribution for the data that is a
mixture of normal (or other) distributions and estimating the parame-
ters of those distributions. Density-based clustering involves looking for
regions where data is dense without reference to cluster centers.

Principal components analysis (PCA) is an important tool in machine
learning. It involves replacing a large number of features by a smaller
number of manufactured features that capture most of the variability.
The manufactured features are uncorrelated with each other.

SHORT CONCEPT QUESTIONS

2.1 Why is feature scaling important in unsupervised learning? Ex-
plain two methods for feature scaling. What are the advantages
and disadvantages of each method?

2.2 Suppose there are three features, A, B, and C. One observation has
values 2, 3, and 4 for A, B, and C, respectively. Another has values
6, 8, and 7 for A, B, and C respectively. What is the Euclidean dis-
tance between the two observations?

2.3 What would be the center of a cluster consisting of the two ob-
servations in question 2.2?

2.4 Explain the steps in the k-means algorithm.
2.5 Explain (a) the elbow method and (b) the silhouette method for

choosing the number of clusters, k.
2.6 Why do the Euclidean distances between observations increase

as the number of features increases? Suppose that you start with
ten features and then by mistake create ten more features that
are identical to the first ten. What effect does this have on the dis-
tance between two of the observations?

2.7 How does hierarchical clustering work? What are its advantages
and disadvantages relative to k-means?

Unsupervised Learning 45

2.8 Explain what is meant by (a) distribution-based clustering and
(b) density-based clustering.

2.9 Under what circumstances is principal components analysis most
useful for understanding data?

2.10 What is meant by (a) a factor loading and (b) a factor score?

EXERCISES

2.11 Use data at

 www-2.rotman.utoronto.ca/~hull
to calculate cluster centers without scaling for the 14 high risk
countries in Table 2.6. Scale the cluster centers. Verify that your
answer agrees with the result in Table 2.5 for high risk countries.

2.12 Use the principal components analysis results to determine how
you would describe country risk with two factors. Give results for
both the scaled data and the original non-scaled data.

2.13 Python code used to produce the results in this chapter can be
found at

www-2.rotman.utoronto.ca/~hull
(a) Carry out k-means clustering for k=3 with all four features

(corruption index, peace index, legal risk index, and real GDP

growth rate). Compare the countries that are in the high-risk

cluster with those that are in the high-risk cluster when only

three features are used (see Table 2.6).

(b) Use hierarchical clustering to determine three clusters from

the peace index, legal risk index, and real GDP growth rate.

Compare the countries that are in the high-risk cluster with

those that are in the high-risk cluster when the k-means al-

gorithm is used (see Table 2.6). A Python package, Agglom-

erativeClustering, for hierarchical clustering can be import-

ed from sklearn.cluster. Try different measures of closeness

(referred to as “linkage” in the package).

2.14 The country risk data used in Section 2.5 is from the years 2016
and 2017. Data for the year 2019 is at

 www-2.rotman.utoronto.ca/~hull
 Use the 2019 data to determine clusters. How do the clusters dif-

fer from those in Tables 2.6 to 2.8? What other data would you
like to collect to improve your clustering?

47

Chapter 3

Supervised Learning:
Linear and Logistic Regression

Linear regression has been used by statisticians for many years. The

famous mathematician Carl Friedrich Gauss is credited with first sug-
gesting the least squares approach that underlies linear regression in
about the year 1800. In machine learning, we do not have to assume
linear relationships. (Indeed, many of the tools we will present later in
this book lead to non-linear models.) In spite of this, linear regression
remains an important tool in machine learning. It is often one of the
first tools used by analysts in supervised learning.

Plain vanilla linear regression involves minimizing the mean
squared error (mse) when the value of a target is being predicted from
one or more features. This will be familiar to many readers. This chap-
ter discusses how categorical features (i.e., features that are not numer-
ical) can be incorporated into linear regression and therefore used for
prediction. It also discusses Ridge, Lasso, and Elastic Net regression
which are particularly useful when predictions are being made from a
large number of features. It then moves on to explain logistic regres-
sion, which is a way of handling situations where the objective is to
learn how to classify data. Finally, it covers the k-nearest-neighbor algo-
rithm which is a simple alternative to linear and logistic regression.

48 Chapter 3

3.1 Linear Regression: One Feature

We start with the simple situation where the target Y is being pre-

dicted from a single feature X. In linear regression we assume a linear
relationship so that the model is:

𝑌 = 𝑎 + 𝑏𝑋 + ε

where a and b are constants and ɛ is the error term. Denote Xi and Yi (1
≤ i ≤ n) as the values of X and Y for the ith observation in the training
set. The “best fit” values of a and b are defined as those that minimize
the mean squared error (mse) for the observations in the training set.
This means that we choose a and b so that:

1

𝑛
∑(𝑌𝑖 − 𝑎 − 𝑏𝑋𝑖)2

𝑛

𝑖=1

is minimized.1 We can use calculus to find the minimum. Denoting the
averages of the observations on X and Y by 𝑋̅ and 𝑌̅

𝑏 =
∑ 𝑋𝑖𝑌𝑖 − 𝑛𝑋̅𝑌̅𝑛

𝑖=1

∑ 𝑋𝑖
2 − 𝑛𝑋̅2𝑛

𝑖=1

𝑎 = 𝑌̅ − 𝑏𝑋̅

An example of linear regression when there is only one feature is

provided by the model in Figure 1.5 of Chapter 1. This is based on the
training data set in Table 1.1, which is reproduced in Table 3.1. In this
case n = 10, 𝑋̅ = 43, and 𝑌̅ = 216,500. Also,

 ∑ 𝑋𝑖𝑌𝑖 = 100,385,000
10

𝑖=1

∑ 𝑋𝑖
2

10

𝑖=1
= 20,454

so that

1 This is the same as minimizing the sum of squared errors as n is a constant for any
given data set.

Linear and Logistic Regression 49

𝑏 =
100,385,000 − 10 × 43 × 216,500

20,454 − 10 × 432
= 3,827.3

𝑎 = 216,500 − 3827.3 × 43 = 51,160.4

and the model is

𝑌 = 51,160.4 + 3,827.3𝑋

Sometimes the parameter a is set equal to zero. In this case,

𝑏 =
∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1

∑ 𝑋𝑖
2𝑛

𝑖=1

(We use the linear model as an example here but it will be recalled that
in Chapter 1 we did not find a linear model to be the best model for the
data in Table 3.1.)

Table 3.1 The training set: salaries for a random sample of ten people
working in a particular profession in a certain area

Age (years) Salary ($)

25 135,000
55 260,000
27 105,000
35 220,000
60 240,000
65 265,000
45 270,000
40 300,000
50 265,000
30 105,000

3.2 Linear Regression: Multiple Features

When more than one feature is used to predict a target we can write

the model as

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚 + ε (3.1)

50 Chapter 3

where Y is the value of the target and the Xj (1 ≤ j ≤ m) are the values of
the features that are used to predict Y. As before, the prediction error is
denoted by ɛ. The parameters a and 𝑏𝑗 (1 ≤ j ≤ m) are chosen to mini-

mize the mean squared error over the training data set. This means that
the task in linear regression is to find values for a and the bj that mini-
mize

1

𝑛
∑(𝑌𝑖 − 𝑎 − 𝑏1𝑋𝑖1 − 𝑏2𝑋𝑖2 − ⋯ − 𝑏𝑚𝑋𝑖𝑚)2 (3.2)

𝑛

𝑖=1

where Yi and Xij are the values of the target and the jth feature for ob-
servation i. In machine learning, the parameter a is referred to as the
bias and the coefficients bj are referred to as the weights. As in the case
of a single feature, calculus can be used to determine the conditions for
a minimum. This leads to a set of simultaneous equations for determin-
ing the a and bj. These equations can be solved using matrix algebra.

Statisticians list a number of conditions that must be satisfied for
linear regression to be valid. The relationship between the target and
the features should be linear; there should be no correlation between
the feature values; the errors in the prediction should be normally dis-
tributed with a constant standard deviation; and the observations
should be independent. In practice, these conditions are at best satisfied
only approximately. Identifying serious violations can lead an analyst to
find a better model (e.g., by switching from a linear to a quadratic model
or by transforming feature values in some way). But it is worth noting
that machine learning is different from traditional statistics in that we
are usually working with very large data sets and can handle model
suitability issues by dividing the data into a training set, validation set,
and test set, as outlined in Chapter 1.

Gradient Descent Algorithm
An alternative to matrix algebra, which has to be used for some of

the analyses presented later in this chapter, is the gradient descent algo-
rithm. This is an iterative search routine for finding the minimum. Imag-
ine plotting the expression in equation (3.2) as a function of a and the bj

(1 ≤ j ≤ m) in m + 1 dimensions. We can think of this function as a valley
and our task as that of finding the bottom of the valley. Wherever we
are in the valley, we can use calculus to determine the path of steepest
descent down the valley (i.e., the direction in which each of the a and bj
should be changed to descend as quickly as possible). The gradient de-
scent method proceeds as follows:

Linear and Logistic Regression 51

 choose initial values for a and the bj
 calculate path of steepest descent.
 take a step down the path of steepest descent
 re-compute the path of steepest descent
 take another step
 and so on

We will discuss this methodology in greater detail in Chapter 6.

Polynomial Regressions
Chapter 1 uses the data in Table 3.1 to carry out polynomial regres-

sions. These are regressions where there is a single feature X and 𝑋𝑗 is

set equal to 𝑋𝑗 so that the model is:

𝑌 = 𝑎 + 𝑏1𝑋 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚 + ε

In Chapter 1 we found that the model where m = 5 fits the training set
well but does not generalize well to the validation set. The quadratic
model where m = 2 was chosen because it provided a better fit than the
linear model while still generalizing well.

Sometimes products of features as well as powers of features are
used in a regression. An example where the target is being predicted
from two features is

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋1

2 + 𝑏3𝑋2 + 𝑏4𝑋2
2 + 𝑏5𝑋1𝑋2 + ε

Regression Statistics
A number of statistics can be produced from a linear regression and

can be useful if the assumptions mentioned earlier are approximately
satisfied. The R-squared statistic is between zero and one and measures
the proportion of the variance in the target that is explained by the fea-
tures. It is

1 −
Variance of the errors ε

Variance of the observations on the target 𝑌

When there is only one feature, R-squared is the square of the coeffi-
cient of correlation. In the case of the data in Table 3.1, the R-squared
for the linear model is 0.54 while that for the quadratic model is 0.80.

The t-statistic of the a or 𝑏𝑗 parameters estimated by a linear regres-

sion is the value of the parameter divided by its standard error. The P-

52 Chapter 3

value is the probability of obtaining a t-statistic as large as the one ob-
served if we were in the situation where the parameter had no explana-
tory power at all. A P-value of 5% or less is generally considered as in-
dicating that the parameter is significant. If the P-value for the parame-
ter bj in equation (3.1) is less than 5%, we are over 95% confident that
the feature Xj has some effect on Y. The critical t-value for 95% confi-
dence when the data set is large is 1.96 (i.e., t-statistics greater than
1.96 are significant in the sense that they give rise to P-values less than
5%).2

3.3 Categorical Features

The features used for prediction can be categorical as well as numer-

ical. As explained in Chapter 1, a categorical variable is a variable that
can fall into one of a number of categories. For example, the purchasers
of a product might be categorized as male or female. The hair color of
women buying a particular beauty product might be categorized as
blonde, red, brown, or black.

The standard way of dealing with categorical features is to create a
dummy variable for each category. The value of this variable is one if
the feature is in the category and zero otherwise. This is referred to as
one-hot encoding. In the situation where individuals are categorized as
male or female, we could create two dummy variables. For men the first
dummy variable would be one and the second would be zero. For wom-
en the first dummy variable would be zero and the second dummy vari-
able would be one. In the hair color example, there would be four dum-
my variables and, in the case of each observation, we would assign one
to the relevant variable and zero to the other three.

The procedure we have described is appropriate when there is no
natural ordering between the feature values. When there is a natural
ordering, we can reflect this in the numbers assigned. For example, if
the size of an order is classified as small, medium, or large, we can re-
place the feature by a numerical variable where small = 1, medium = 2,
and large = 3. Similarly, if job title is a feature and the categorization is
analyst, associate, vice president, executive director, and managing di-

2 This is for what is referred to as a “two-tailed test” where the analyst is testing for
the significance of either a positive or negative relationship between the feature and
the target. P-values are usually quoted for a two-tailed test. In a one-tailed test, we
expect the relationship to have a particular sign (positive or negative) and disregard
the possibility of it having the other sign. The critical P-value for a one-tailed test
when the data set is large is 1.65.

Linear and Logistic Regression 53

rector, we might replace the feature by a numerical value where analyst
= 1, associate = 2, vice president = 3, executive director = 4, and manag-
ing director = 5. But, after considering salaries and responsibilities, we
might choose a different set of numerical values such as analyst = 1, as-
sociate = 2, vice president = 4, executive director = 7, and managing di-
rector = 10.

Once categorical features have been converted to numerical values, a
linear regression can be carried out in the usual way. Some of the
dummy variables created from categorical variables may have a signifi-
cant effect on the target while others do not.

The Dummy Variable Trap
When one-hot encoding is used for one or more categorical variables

and there is a constant (bias) term in the regression, there is no unique
best-fit linear regression equation. This is referred to as the dummy var-
iable trap.

Suppose that the following equation has been derived for predicting
a target Y

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚 + ε

and that the first few features, X1, X2,….,Xk (k ≤ m), are dummy variables
created from the one-hot encoding of a particular categorical variable.
Imagine what happens if we add a constant C to the bias, a, and subtract
C from each of the weights 𝑏1, 𝑏2, … , 𝑏𝑘 . From the nature of one-hot en-
coding, it must be the case that Xj = 0 for 1 ≤ j ≤ k except for one particu-
lar value of j where Xj = 1. As a result, subtracting C from each of b1,
b2,….,bk reduces the estimated value of Y by exactly C. Adding C to a in-
creases the estimated value of Y by C. The estimated value of Y is there-
fore the same when we make these two changes. This is true for any
value of C.

Fortunately, regularization, which is designed to simplify models
and avoid over-fitting (see next section), has the side effect of dealing
with the dummy variable trap problem by finding a single “best” regres-
sion equation. This is an equation where the magnitudes of the weights
are small.

3.4 Regularization

In machine learning there are often a large number of features, some

of which may be correlated with each other. This can lead to over-fitting

54 Chapter 3

and models that are unnecessarily complex. A common way of handling
this is known as regularization. In the next three sections we introduce
three regularization techniques and illustrate them with the data in Ta-
ble 3.1. All calculations are in www-2.rotman.utoronto.ca/~hull.

Before using regularization, it is important to carry out feature scal-
ing to ensure that the numerical values of features are comparable. This
is described in Section 2.1.

3.5 Ridge Regression

Ridge regression (also referred to as Tikhonov regression) is a regu-

larization technique where we change the function that is to be mini-
mized from that in equation (3.2) to:3

1

𝑛
∑(𝑌𝑖 − 𝑎 − 𝑏1𝑋𝑖1 − 𝑏2𝑋𝑖2 − ⋯ − 𝑏𝑚𝑋𝑖𝑚)2

𝑛

𝑖=1

+ λ ∑ 𝑏𝑗
2 (3.3)

𝑚

𝑗=1

 For each feature j, Ridge regression involves adding the term

λ𝑏𝑗
2 to the mean squared error. (Note that we do not add a term corre-

sponding to the bias, a.) This change has the effect of encouraging the
model to keep the weights bj as small as possible. Ridge regression is
referred to as L2 regularization.

Consider the situation where there are two highly correlated fea-
tures, X1 and X2, that have been scaled so that they have mean zero and
standard deviation one. Suppose that the best fit linear model, obtained
by minimizing the objective function in equation (3.2), is

𝑌 = 𝑎 + 1000𝑋1 − 980𝑋2

Because the features are close substitutes, simpler models such as

𝑌 = 𝑎 + 𝑏𝑋1 or 𝑌 = 𝑎 + 𝑏𝑋2

3 Alternative equivalent objective functions for Ridge regression are sometimes

used. The value of  depends on the way the objective function is specified.
Sklearn’s LinearRegression package for Python adds the sum of squared errors,
rather than the mean squared error, to λ ∑ 𝑏𝑗

2.𝑚
𝑗=1 This means that Sklearn’s  should

be n times the  in equation (3.3). In Géron’s book Hands on machine learning with
Scikit-Learn and TensorFlow, 1/n in equation (3.3) is replaced by 1/(2n). The value
of used in this formulation should be half that in equation (3.3).

Linear and Logistic Regression 55

where b is about 20 are likely to generalize better. Ridge regression,
because it penalizes large positive or negative values of the coefficients,
would find one of these models.

The Ridge regression model in equation (3.3) should only be used
for determining model parameters using the training set. Once the
model parameters have been determined, equation (3.2) (i.e., the equa-
tion without the λ ∑ 𝑏𝑗

2𝑚
𝑗=1 term) should be used for prediction. A valida-

tion set should be used to test whether equation (3.2) generalizes well.
The accuracy of the model that is finally chosen should be quantified
using equation (3.2) on the test set.

The parameter λ is referred to as a hyperparameter because it is
used to train the model, but is not part of the model that is used to pre-
dict Y. The choice of a value for λ is obviously important. A large value
for λ would lead to all the bj being set equal to zero. (The resulting mod-
el would then be uninteresting as it would always predict a value equal
to a for Y.) In practice, it is desirable to try several different values for λ
and see how well the resulting models generalize to a validation set.

We mentioned that the standard linear regression objective function
in equation (3.2) can be minimized analytically by using matrix algebra.
We can also minimize the Ridge regression objective function in equa-
tion (3.3) analytically. The gradient descent method introduced in Sec-
tion 3.2 is an alternative.

We will use the model where we fitted a polynomial of degree five to
the training data set in Table 3.1 as an illustration of regularization. We
know from Chapter 1 that the model over-fits the training set. It will be
instructive to see how regularization handles this.

As a first step, feature scaling is necessary. In this example we have
five features. These are X, X2, X3, X4, and X5, where X is age in years. Each
of these must be scaled. (Note that it is not sufficient to scale only X.) We
will use Z-score scaling. Table 3.2 shows values of the features together
with means and standard deviations. (The size of the numbers in the
table emphasizes the importance of scaling.) Table 3.3 shows the scaled
features.

The best fit linear regression when the features have the scaled val-
ues in Table 3.3 and the salary Y is measured in $’000s is

𝑌 = 216.5 − 32,622.6𝑋 + 135,402.7𝑋2 − 215,493.1𝑋3

+ 155,314.6𝑋4 − 42,558.8𝑋5 (3.4)

56 Chapter 3

Table 3.2 Feature values. X equals the age of individuals in the training
set

Instance X X2 X3 X4 X5

1 25 625 15,625 390,625 9,765,625
2 55 3,025 166,375 9,150,625 503,284,375
3 27 729 19,683 531,441 14,348,907
4 35 1,225 42,875 1,500,625 52,521,875
5 60 3,600 216,000 12,960,000 777,600,000
6 65 4,225 274,625 17,850,625 1,160,290,625
7 45 2,025 91,125 4,100,625 184,528,125
8 40 1,600 64,000 2,560,000 102,400,000
9 50 2,500 125,000 6,250,000 312,500,000

10 30 900 27,000 810,000 24,300,000
Mean 43.2 2,045 104,231 5,610,457 314,153,953
S.D. 14.1 1,259 89,653 5,975,341 389,179,640

Table 3.3 Values of features in Table 3.2 after scaling

Instance X X2 X3 X4 X5

1 −1.290 −1.128 −0.988 −0.874 −0.782
2 0.836 0.778 0.693 0.592 0.486
3 −1.148 −1.046 −0.943 −0.850 −0.770
4 −0.581 −0.652 −0.684 −0.688 −0.672
5 1.191 1.235 1.247 1.230 1.191
6 1.545 1.731 1.901 2.048 2.174
7 0.128 −0.016 −0.146 −0.253 −0.333
8 −0.227 −0.354 −0.449 −0.511 −0.544
9 0.482 0.361 0.232 0.107 −0.004

10 −0.936 −0.910 −0.861 −0.803 −0.745

We can now apply Ridge regression. Table 3.4 shows the bias, a, and
weights, bj, for two different values of λ. Setting = 0 would give the
“no-frills” regression result in equation (3.4). It can be seen that moving
from = 0 to = 0.02 has a dramatic effect on the weights, reducing
them by several orders of magnitude. Increasing  from 0.02 to 1.0 re-
duces the weights further. Figures 3.1 to 3.3 plot the forecasted salary
as a function of age for the predictions given by = 0, 0.02, and 0.1. It
can be seen that, as increases, the model becomes less complex. The
= 0.02 model is very similar to the quadratic model (see Figure 1.4),
which we found in Chapter 1 generalizes well to new data.

Linear and Logistic Regression 57

Table 3.4 Variation of bias and weights for different values of for
Ridge regression. Salary is measured in $’000s (see Excel file for salary
vs. age example)

 a b1 b2 b3 b4 b5

0.02 216.5 97.8 36.6 −8.5 −35.0 −44.6
0.10 216.5 56.5 28.1 3.7 −15.1 −28.4

Figure 3.1 Prediction of salary ($’000s), no regularization (= 0)

Figure 3.2 Prediction of salary ($’000s) when Ridge regression is used
with = 0.02

0

50

100

150

200

250

300

20 30 40 50 60 70

Sa
la

ry
 (

$
)

Age (years)

0

50

100

150

200

250

300

20 30 40 50 60 70

S
a

la
ry

 (
'0

0
0

s)

Age (years)

58 Chapter 3

Figure 3.3 Prediction of salary when Ridge regression is used with =
0.1

3.6 Lasso Regression

Lasso is short for “Least absolute shrinkage and selection operator.”

In Ridge, we added a constant times the sum of the squared weights to
the objective function. In Lasso, we add a constant times the sum of the
absolute weights. This gives the following objective function: 4

1

𝑛
∑(𝑌𝑖 − 𝑎 − 𝑏1𝑋𝑖1 − 𝑏2𝑋𝑖2 − ⋯ − 𝑏𝑚𝑋𝑖𝑚)2

𝑛

𝑖=1

+ λ ∑|𝑏𝑗| (3.5)

𝑚

𝑗=1

This function cannot be minimized analytically and so an approach
similar to the gradient descent algorithm explained earlier must be
used. Lasso regression is referred to as L1 regularization.

We saw in the previous section that Ridge regression reduces the
weights assigned to features in order to simplify the model. The simpli-
fied model often generalizes better than the unregularized model. Lasso
regression also has the effect of simplifying the model. It does this by
setting the weights of unimportant features to zero. When there are a
large number of features, Lasso can identify a relatively small subset of
them to form a good prediction model.

4 There are variations in the way the objective function is specified. Sklearn’s Line-
arRegression package for Python replaces 1/n by 1/(2n) in equation (3.5). This
means that Sklearn’s should be half as much as the in equation (3.5).

0

50

100

150

200

250

300

20 30 40 50 60 70

S
a

la
ry

 (
'0

0
0

s)

Age (years)

Linear and Logistic Regression 59

The results of using Lasso for our example where a fifth order poly-
nomial is used to predict the salary of an individual from the individu-
al’s age is shown in Table 3.5. The table shows that Lasso does indeed
set the weights of some features equal to zero. We might expect that b5,
b4, and possibly b3 will be zero so that the model reduces to a quadratic
or cubic model. In fact, this is not what happens. When = 0.02, Lasso
only reduces b3 to zero; when = 0.1, Lasso reduces b2 and b4 to zero;
when = 1, Lasso reduces b2, b3, and b5 to zero.

Figures 3.4, 3.5 and 3.6 show the predictive models that are created
for = 0.02, 0.1, and 1. They are simpler than the fifth-degree polyno-
mial model in equation (3.4) with much lower weights. As in the case of
Ridge regression, the models become simpler as  is increased. The
model in Figure 3.6 is very similar to the quadratic model in Figure 1.4.

Table 3.5 Variation of bias and weights for different values of for
Lasso regressionSalary is measured in $’000s (see Excel file for salary
vs. age example)

 a b1 b2 b3 b4 b5

0.02 216.5 −646.4 2,046.6 0 −3,351.0 2,007.9
 0.10 216.5 355.4 0 −494.8 0 196.5
 1.00 216.5 147.4 0 0 −99.3 0

Figure 3.4 Prediction of salary when Lasso regression is used with =
0.02. Salary is measured in $’000s.

0

50

100

150

200

250

300

20 30 40 50 60 70

S
a

la
ry

 (
'0

0
0

s)

Age (years)

60 Chapter 3

Figure 3.5 Prediction of salary when Lasso regression is used with λ =
0.1. Salary is measured in $’000s.

Figure 3.6 Prediction of salary when Lasso regression is used with =
1. Salary is measured in $’000s.

3.7 Elastic Net Regression

Elastic Net regression is a mixture of Ridge and Lasso. The function

to be minimized includes both a constant times the sum of the squared
weights and a different constant time the sum of the absolute values of

0

50

100

150

200

250

300

20 30 40 50 60 70

S
a

la
ry

 (
'0

0
0

s)

Age (years)

0

50

100

150

200

250

300

20 30 40 50 60 70

S
a

la
ry

 (
'0

0
0

s)

Age (years)

Linear and Logistic Regression 61

the weights. It is

1

𝑛
∑(𝑌𝑖 − 𝑎 − 𝑏1𝑋1𝑖 − 𝑏2𝑋2𝑖 − ⋯ − 𝑏𝑚𝑋𝑚𝑖)

2

𝑛

𝑖=1

+ λ1 ∑ 𝑏𝑗
2

𝑚

𝑗=1

+ λ2 ∑|𝑏𝑗|

𝑚

𝑗=1

In Lasso some weights are reduced to zero, but others may be quite

large. In Ridge, weights are small in magnitude, but they are not re-
duced to zero. The idea underlying Elastic Net is that we may be able to
get the best of both worlds by making some weights zero while reduc-
ing the magnitude of the others. We illustrate this for our fifth order
polynomial example by setting λ1 = 0.02 and λ2 = 1. The resulting model
for predicting salary ($’000s), Y, from age (years), X, is

𝑌 = 216.5 + 96.7𝑋 + 21.1𝑋2 − 26.0𝑋4 − 45.5𝑋5

This has a similar structure to the Lasso model when λ = 0.02 (see Table
3.5), except that the non-zero weights are much smaller. The model is
shown in Figure 3.7. Again, we find that the result is very similar to the
quadratic model which was developed in Chapter 1 for this example.

Figure 3.7 Prediction of salary when Elastic Net regression is used
with = 0.2 and = 1.0 (see Excel file for salary vs. age example)

0

50

100

150

200

250

300

20 30 40 50 60 70

S
a

la
ry

 (
'0

0
0

s)

Age (years)

62 Chapter 3

3.8 Results for House Price Data

So far, we have explained regularization with a baby data set of only

ten observations. We now show how it can be used in a more realistic
situation.

Local authorities in many countries need to predict the market pric-
es of houses to determine property taxes. They can do this by relating
the known prices of houses that have been sold to features such as the
number of bedrooms, number of bathrooms, and the neighborhood in
which the house is located. The data set we will use consists of infor-
mation on houses that were sold in Iowa during a four-year period.5

Before starting we emphasize the importance of the material in
Chapter 1 concerning the need to divide all available data into three
parts: a training set, a validation set, and a test set. The training set is
used to determine parameters for trial models. The validation set is
used to determine the extent to which the models created from the
training set generalize to new data. The test set is used as a final esti-
mate of the accuracy of the chosen model. After data cleaning, we had
2,908 observations. We split this as follows: 1,800 in the training set,
600 in the validation set and 508 in the test set.

The full data set contains a total of about 80 features, some numeri-
cal and some categorical. To illustrate the regression techniques dis-
cussed in this chapter, we will use a total of 23 features. These are listed
in Table 3.6. Twenty-one are numerical and two are categorical. One of
the categorical features is concerned with the basement quality, as indi-
cated by the ceiling height. The categories are:

 Excellent (>100 inches)
 Good (90 to 99 inches)
 Typical (80 to 89 inches)
 Fair (70 to 79 inches)
 Poor (< 70 inches)
 No basement

This is an example of a categorical variable where there is a natural or-
dering. We created a new variable that had values of 5, 4, 3, 2, 1, and 0
for the six categories, respectively.

The other categorical feature specifies the location of the house as in
one of 25 neighborhoods. Given the real estate agents’ mantra “location,

5 This data set was used in a Kaggle competition where contestants tried to predict
prices for test data.

Linear and Logistic Regression 63

location, location” we felt it important to include this feature. We there-
fore introduced 25 dummy variables. The dummy variable equals one
for an observation if the neighborhood is that in which the house is lo-
cated and zero otherwise. The total number of features in the model
was therefore 47 (21 numerical features, 1 for basement quality and 25
for location).

Table 3.6 Features for estimating house prices and weights using a
linear regression model on scaled data with no regularization (from
Python)

Feature Weights for simple linear

regression
Lot area (square feet) 0.08
Overall quality (scale: 1 to 10) 0.21
Overall condition (scale: 1 to 10) 0.10
Year built 0.16
Year remodeled (= year built if no
remodeling or additions)

0.03

Finished basement (square feet) 0.09
Unfinished basement (square feet) −0.03
Total basement (square feet) 0.14
First floor (square feet) 0.15
Second floor (square feet) 0.13
Living area (square feet) 0.16
Number of full bathrooms −0.02
Number of half bathrooms 0.02
Number of bedrooms −0.08
Total rooms above grade 0.08
Number of fireplaces 0.03
Parking spaces in garage 0.04
Garage area (square feet) 0.05
Wood deck (square feet) 0.02
Open porch (square feet) 0.03
Enclosed porch (square feet) 0.01
Neighborhood (25 features) −0.05 to 0.12
Basement quality 0.01

There are relationships between the features in Table 3.6. For exam-

ple, the total basement area is the sum of the finished and unfinished
areas. Features such as living area, number of bedrooms, and number of

64 Chapter 3

bathrooms are related to the size of the house and are therefore likely
to be correlated. These are the sort of issues that Ridge and Lasso re-
gression can deal with.

The features and dummy variables were scaled using the Z-score
method and the training set data. We also scaled the target values (i.e.,
the house prices) using the Z-score method and train set observations.
(The latter is not necessary but will prove useful.)

When a plain vanilla linear regression is used, the results are those
shown in Table 3.6. The mean squared error for the prediction of the
prices of houses in the training set is 0.114. Since observations on the
price have been scaled so that they have a variance of 1, this means that
1−0.114 or 88.6% of the variance of house prices in the training set is
explained by the regression model.

For the data we are considering, it turns out that this regression
model generalizes well. The mean squared error for the validation set
was only a little higher than that for the training set at 0.117. However,
linear regression with no regularization leads to some strange results
because of the correlations between features. For example, it makes no
sense that the weights for number of full bathrooms and number of
bedrooms are negative.

We tried using Ridge regression with different values of the hyper-
parameter, . The impact of this on the prediction errors for the valida-
tion set is shown in Figure 3.8. As expected, the prediction error in-
creases as  increases. Values of  in the range 0 to 0.1 might reasona-
bly be considered because the increase in prediction errors is small
when  is in this range. However, it turns out that the improvement in
the model is quite small for these values of . The average absolute val-
ue of the weights decreases from about 0.049 to about 0.046 as  in-
creases from 0 to 0.1. Even when  is increased to 0.6 the average abso-
lute value of the weights declines to only 0.039.

Lasso regression leads to more interesting results. Figure 3.9 shows
how the error in the validation set changes as the value of the Lasso’s 
increases from an initial value of zero. For small values of  the error is
actually less than when = 0, but as  increases beyond about 0.02 the
error starts to increase. A value of  equal to 0.04 could be attractive.
The loss in accuracy is quite small. The mean squared error for the vali-
dation set is only 12.0% of the total variance in the observations (com-
pared with 11.7% when  is set equal to 0 so that there is no regulariza-
tion). However, when =0.04, 25 of the weights are zero and the aver-
age value of the weights is reduced to 0.034. (This is much better than
the corresponding results using Ridge.)

Linear and Logistic Regression 65

Figure 3.8 Ridge regression results showing the mean squared error
as a percent of the total squared error in the observations for the vali-
dation set (from Excel and Python)

Figure 3.9 Lasso results for validation set for different values of
(from Python)

If we are prepared to let the percentage mean squared error rise to

about 14%, we can set  equal to 0.1. This results in 30 of the weights
becoming zero. The remaining non-zero weights are shown in Table 3.7.
(The weights for wood deck and open porch were less than 0.005, but

11.0%

11.5%

12.0%

12.5%

13.0%

13.5%

14.0%

0.0 0.1 0.2 0.3 0.4 0.5 0.6

V
a

ri
a

n
ce

 U
n

e
x

p
la

in
e

d



11.0%

11.5%

12.0%

12.5%

13.0%

13.5%

14.0%

0.00 0.02 0.04 0.06 0.08 0.10

V
a

ri
a

n
ce

 U
n

e
x

p
la

in
e

d



66 Chapter 3

not quite zero and are not shown in the table.) In Tables 3.6 and 3.7 it
can be seen that overall quality and total living area are the most im-
portant predictors. A key point is that the negative weights in Table 3.6
that made no sense have been eliminated.

Table 3.7 Non-zero features in the Lasso model and their weights (af-
ter scaling) when =0.1 (from Python)

Feature Weight
Lot area (square feet) 0.04
Overall quality (scale from 1 to 10) 0.30
Year built 0.05
Year remodeled 0.06
Finished basement (square feet) 0.12
Total basement (square feet) 0.10
First floor (square feet) 0.03
Living area (square feet) 0.30
Number of fireplaces 0.02
Parking spaces in garage 0.03
Garage area (square feet) 0.07
Neighborhoods (3 out of 25 non-zero) 0.01, 0.02, and 0.08
Basement quality 0.02

For the data we are considering, Elastic Net did not produce an im-

provement over Lasso. It is therefore likely that an analyst would in
this case opt for one of the Lasso models. Once the model has been cho-
sen its accuracy should be assessed using the test set. If Lasso with
=0.04 is chosen, the mean squared error for the test data set is 12.5%
(so that 87.5% of the variance in house prices is explained). If Lasso
with =0.1 is chosen, the mean squared error for the test data set is
14.7% (so that 85.3% of the variance in house prices is explained).

3.9 Logistic Regression

As mentioned in Chapter 1 there are two types of supervised learn-

ing models: those that are used to predict a numerical variable and
those that are used for classification. Up to now in this chapter, we have
considered the problem of predicting a numerical variable. We now
move on to the classification problem; that is, the problem of predicting
which of two categories new observations will belong to. Logistic re-

Linear and Logistic Regression 67

gression is one of the tools that can be used for this. Other tools will be
presented in Chapters 4, 5, and 6.

Suppose that there are a number of features Xj (1 ≤ j≤ m), some of
which may be dummy variables created from categorical features. Sup-
pose further that there are two classes to which the observations can
belong. One of the classes will be referred to as a positive outcome
(typically this will be the thing we are trying to predict). The other class
will be referred to as a negative outcome. An example of classification is
the detection of junk e-mail from words included in the e-mail. A junk e-
mail would be classified as a positive outcome and a non-junk e-mail as
a negative outcome.

Logistic regression (also called logit regression) can be used to cal-
culate the probability, Q, of a positive outcome. It does this by using the
sigmoid function:

𝑄 =
1

1 + 𝑒−𝑌
 (3.6)

This is the S-shaped function shown in Figure 3.10. It has values be-
tween 0 and 1. When Y is very large and negative, 𝑒−𝑌 is very large and
the function Q is close to zero. When Y is very large and positive, 𝑒−𝑌 is
very small and Q is close to one.

Figure 3.10 The sigmoid function

We set Y equal to a constant (the bias) plus a linear combination of

the features:

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

Y

Q

68 Chapter 3

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚

so that the probability of a positive outcome is

𝑄 =
1

1 + exp(−𝑎 − ∑ 𝑏𝑗𝑋𝑗
𝑚
𝑗=1)

 (3.7)

When we are predicting the value of a target, as in the Iowa house

price example, we can use mean square error as the objective function.
When classifying observations, a different objective function is neces-
sary. The maximum likelihood method in statistics is a way of choosing
parameters from a set of observations in a way that maximizes the
chance of the observations occurring. In the present situation, it leads
to choosing the a and bj so that

 ∑ ln(𝑄) + ∑ ln (1 − 𝑄)
Negative
Outcomes

Positive
Outcomes

 (3.8)

is maximized. The first summation here is over all the observations
which led to positive outcomes and the second summation is over all
observations which led to negative outcomes. This function cannot be
maximized analytically and gradient ascent (similar to gradient de-
scent) methods must be used.

Earlier in this chapter we showed how regularization can simplify
linear regression models and avoid overfitting. Regularization can be
used in a similar way in logistic regression. Ridge regression (L2 regu-
larization) involves adding 𝜆 ∑ 𝑏𝑗

2𝑚
𝑗=1 to the expression for Y in equation

(3.6) so that the probability of a positive outcome becomes

𝑄 =
1

1 + exp(−𝑎 − ∑ 𝑏𝑗𝑋𝑗
𝑚
𝑗=1 − λ ∑ 𝑏𝑗

2𝑚
𝑗=1)

Similarly, Lasso regression (L1 regularization) leads to

𝑄 =
1

1 + exp(−𝑎 − ∑ 𝑏𝑗𝑋𝑗
𝑚
𝑗=1 − λ ∑ |𝑏𝑗|𝑚

𝑗=1)

and Elastic Net leads to

Linear and Logistic Regression 69

𝑄 =
1

1 + exp(−𝑎 − ∑ 𝑏𝑗𝑋𝑗
𝑚
𝑗=1 − 𝜆1 ∑ 𝑏𝑗

2𝑚
𝑗=1 − λ2 ∑ |𝑏𝑗|𝑚

𝑗=1)

We emphasize that these formulas are used for estimating the bias

and weights from the training set. Once this is done, equation (3.7) is
used for predicting Q from the validation set, test set, or new data.

3.10 Decision Criteria

Once the model for estimating the probability of a positive outcome

has been developed, it is necessary to choose a criterion for deciding
whether a new observation should be classified as positive. It is tempt-
ing to maximize a simple accuracy measure: the percentage of observa-
tions that are correctly classified. But this does not always work well.
Suppose we are trying to detect credit card fraud from features such as
number of charges per day, types of purchases, and so on. If only one
percent of transactions are fraudulent, we can obtain 99% accuracy
simply by forecasting that all transactions are good!

The problem here is that there is a class imbalance. There are two
classes:

 transaction good
 transaction fraudulent

and the first class is much bigger than the second. If the classes were
equal in size (or approximately equal in size), using the accuracy meas-
ure we have just mentioned could be appropriate. Unfortunately, most
of the time the classes we deal with are imbalanced.

One way of handling this problem is to create a balanced training set
by under-sampling observations from the majority class. For example,
in the situation we have just mentioned an analyst could form a training
set by collecting data on 100,000 fraudulent transactions and pairing it
with a random sample of 100,000 good transactions. Another approach
involves over-sampling the minority class by creating synthetic obser-
vations. This is known as SMOTE (Synthetic Minority Over-sampling
Technique).6 Balancing the training set in one of these ways is not nec-
essary for logistic regression but does make methods we will talk about
later in this book such as SVM and neural networks, work better.

6 See N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthet-
ic Minority Over-Sampling Technique,” Journal of Artificial Intelligence Research, 16
(2002), 321–357.

http://www.jair.org/

70 Chapter 3

In practice, a balanced training set is often not used in logistic re-
gression. It is important to keep in mind the purpose of the classifica-
tion. Often the cost of classifying a new observation as positive when in
fact it turns out to be negative is different from the cost of classifying it
as negative when in fact it turns out to be positive. It is then a mistake to
base decisions on whether Q is greater than or less than 0.5 and a
threshold for Q that is different from 0.5 is likely to be appropriate. As
we will explain with the example in the next section, it can be useful to
present the decision maker with a range of alternative decision criteria.

3.11 Application to Credit Decisions

In this section, we consider a subset of the data provided by the

company Lending Club on the performance of its loans. (This data and
the analysis are at www-2.rotman.utoronto.ca/~hull.) Lending Club is a
peer-to-peer lender that allows investors to lend money to borrowers
without an intermediary being involved.7

Lending Club uses machine learning. We will attempt the challenging
task of trying to improve on Lending Club’s criteria by using machine
learning ourselves. An extract from the data we use is shown in Table
3.8. In this example, we will be looking at only one model. It will there-
fore be sufficient to use a training set and a test set. (The validation set,
it will be recalled, is necessary when several models are considered, and
the analyst must choose between them.)

In the analyses given here and elsewhere in this book, good loans are
defined as those listed as “Current” and defaulting loans as those listed
as “Charged Off”.8 We define positive outcomes as those that lead to
good loans and negative outcomes as those that lead to defaults. This is
somewhat arbitrary. Some analysts would argue that we are trying to
predict defaults and so defaults should be the positive outcome.9

The training set consists of 8,695 observations of which 1,499 were
for loans that defaulted and the remaining 7,196 were for loans that
proved to be good. The test set consists of 5,916 observations of which
1,058 were for loans that defaulted and the remaining 4,858 were for
loans that were good.

7 See https://www.lendingclub.com.
8 Exercise 3.16 suggests an alternative (possibly better) classification where good
loan as defined as “Fully Paid.”
9 See Exercise 3.14 for how the analysis changes when defaulting loans are labeled
“positive.”

Linear and Logistic Regression 71

We use four features:
 Home ownership
 Income per annum ($)
 Debt to income ratio (%)
 Credit score (FICO)

(One of these, home ownership, was categorical and was handled with a
dummy variable that was 0 or 1.) Table 3.8 shows sample data. The
weights estimated for the training set are shown in Table 3.9. The bias
was estimated as −6.5645. The probability of a loan not defaulting is
therefore given by equation (3.6) with

𝑌 = −6.5645 + 0.1395𝑋1 + 0.0041𝑋2 − 0.0011𝑋3 + 0.0113𝑋4

Table 3.8 Training data set used to predict loan defaults

Home ownership,
1=owns, 0=rents

X1

Income
(‘000s),

X2

Debt to
income

X3

Credit
score,

X4

Loan out-
come

1 44.304 18.47 690 Default
1 136.000 20.63 670 Good
0 38.500 33.73 660 Default
1 88.000 5.32 660 Good

…… …… …… …… ……
…… …… …… …… ……

Table 3.9 Optimal weights (see Excel or Python)

Feature Symbol Weight, bi

Home ownership (0 or 1) X1 0.1395
Income (‘000s) X2 0.0041
Debt to income ratio (%) X3 −0.0011
Credit score (FICO) X4 0.0113

The decision for determining whether a loan is acceptable or not can

be made by setting a threshold, Z, for the value of Q so that:

 If Q ≥ Z the loan is predicted to be good
 If Q < Z the loan is predicted to be bad

72 Chapter 3

The results when a particular value of Z is applied to the test set can be
summarized by what is referred to as a confusion matrix. This shows the
relationship between predictions and outcomes. Tables 3.10, 3.11, and
3.12 show the confusion matrix for three different values of Z for the
test set in our model (see Excel or Python results).

Table 3.10 Confusion matrix for test set when Z = 0.75

 Predict positive

(no default)
Predict negative

(default)
Outcome positive

(no default)
77.59% 4.53%

Outcome negative
(default)

16.26% 1.62%

Table 3.11 Confusion matrix for test set when Z = 0.80

 Predict positive (no
default)

Predict negative
(default)

Outcome positive
(no default)

55.34% 26.77%

Outcome negative
(default)

9.75% 8.13%

Table 3.12 Confusion matrix for test set when Z = 0.85

 Predict positive

(no default)
Predict negative

(default)
Outcome positive (no

default)
28.65% 53.47%

Outcome negative
(default)

3.74% 14.15%

The confusion matrix itself is not confusing but the terminology that

accompanies it can be. The four elements of the confusion matrix are
defined as follows:

 True Positive (TP): Both prediction and outcome are positive

Linear and Logistic Regression 73

 False Negative (FN): Prediction is negative, but outcome is posi-
tive

 False Positive (FP): Prediction is positive and outcome is negative
 True Negative (TN): Prediction is negative and outcome is nega-

tive

These definitions are summarized in Table 3.13

Table 3.13 Summary of definitions

 Predict positive out-

come
Predict negative

outcome
Outcome positive TP FN
Outcome negative FP TN

Ratios that can be defined from the table are:

 Accuracy =
TP + TN

TP + FN + FP + TN

True Positive Rate =
TP

TP + FN

 True Negative Rate =
TN

TN + FP

 False Positive Rate =
FP

TN + FP

Precision =
TP

TP + FP

Another measure sometimes calculated from these ratios is known as
the F-score or F1-score. This is defined as

2 ×
P × TPR

P + TPR

where P is the precision and TPR is the true positive rate. This is an ac-
curacy measure sometimes used for imbalanced data sets that focuses
on how well positives have been identified.

The measures are shown in Table 3.14 for the three different values
of Z that are considered in Tables 3.10 to 3.12.

74 Chapter 3

Table 3.14 Ratios calculated from the confusion matrices in Tables
3.10 to 3.12 (see Excel or Python results)

 Z = 0.75 Z = 0.80 Z = 0.85
Accuracy 79.21% 63.47% 42.80%
True Positive Rate 94.48% 67.39% 34.89%
True Negative Rate 9.07% 45.46% 79.11%
False Positive Rate 90.93% 54.54% 20.89%
Precision 82.67% 85.02% 88.47%
F-score 88.18% 75.19% 50.04%

Accuracy is the percentage of observations that are classified cor-

rectly. It might be thought that maximizing accuracy must be the best
strategy. But, as mentioned in the previous section, this is not necessari-
ly the case. Indeed, in our example accuracy is maximized at 82.12% by
simply classifying all observations as positive (i.e. always predicting no
default and setting Z=0).

The true positive rate, which is also called the sensitivity or the recall
is the percentage of positive outcomes that are correctly predicted. Like
accuracy, this should not be the sole objective because it can be made
one by classifying all observations as good.

The true negative rate, which is also called the specificity, is the pro-
portion of negative outcomes that were predicted as negative. The false
positive rate is one minus the true negative rate. It is the proportion of
negative outcomes that were incorrectly classified. The precision is the
proportion of positive predictions that prove to be correct.

There are a number of trade-offs. We can increase the true negative
rate (i.e., identify a greater proportion of the loans that will default) on-
ly if we identify a lower proportion of the loans that prove to be good.
Also, accuracy declines as the true negative rate increases.

The trade-offs are summarized in Figure 3.11 which plots the true
positive rate against the false positive rate for every possible threshold,
Z. This is known as the receiver operating curve (ROC). The area under
this curve (AUC) is a popular way of summarizing the predictive ability
of a model. If the AUC is 1.0, there is a perfect model where a 100% true
positive rate can be combined with a 0% false positive rate. The dashed
line in Figure 3.11 corresponds to an AUC of 0.5. This corresponds to
models with no predictive ability. A model that makes random predic-
tions would have an AUC of 0.5. Models with AUC < 0.5 are worse than
random.

Linear and Logistic Regression 75

Figure 3.11 ROC curve showing the relationship between true positive
rate and false positive rate for test set (see Excel or Python files)

For the data we have been considering, the Python implementation
calculates an AUC of 0.6020 indicating that the model does has some
small predictive ability. (Given that Lending Club has already used ma-
chine learning to make its lending decisions and we are using only four
features, the AUC is quite encouraging.)

Note that, if we had set default as the positive outcome (perhaps be-
cause this is what we are trying to predict) and no-default as the nega-
tive outcome, the probabilities estimated for default and no-default
would have been the same. The accuracy ratio would be the same, but
the other ratios in Table 3.14 would change. The AUC would be the
same. See Exercise 3.14 to understand this.

In deciding on the appropriate value for Z (i.e., positioning on the
ROC) a lender has to consider the average profit from loans that do not
default and the average loss from loans that default. Suppose for exam-
ple that the profit from a loan that does not default is V, whereas the
loss from cost of a defaulting loan is 4V. The lender’s profit is greatest
when

𝑉 × TP − 4𝑉 × FP

is maximized. For the alternatives considered in Tables 3.10, 3.11, and
3.12 this is 12.55V, 16.34V, and 13.69V, respectively. This indicates that
of the three alternative Z values, Z = 0.80 would be most profitable.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
si

ti
v

e
 R

a
te

False Positive Rate

76 Chapter 3

3.12 The k-Nearest Neighbors Algorithm

Before closing this chapter, we mention a simple alternative to linear

or logistic regression known as the k-nearest neighbors algorithm. This
involves choosing a value for k and then finding the k observations
whose features are most similar to the features from which we are mak-
ing a prediction.

Suppose we are predicting the value of a house in a certain neigh-
borhood from lot size and square feet of living area. We could set k = 3.
We would then search for the three houses in our training set that are
most similar to the house under consideration as far as lot size and liv-
ing area are concerned. We could measure similarity by scaling the fea-
tures and then using the Euclidean distance measure described in Chap-
ter 2. Suppose that the prices of the three most similar houses are
$230,000, $245,000, and $218,000. The estimated value of the house
would be set equal to the arithmetic average of these house prices, or
$231,000.

The algorithm can also be used for classification. Suppose that we
are predicting whether a loan will be good from the four features in Ta-
ble 3.8 and set k = 10. We would search for the 10 loans in our training
set whose features are most similar to the loan under consideration. If
eight of those loans proved to be good and two defaulted our prediction
for the probability of no default would be 80%.

Summary

Linear regression is of course not a new machine learning technique.

It has played a central role in empirical research for many years. Data
scientists have adopted it as a predictive tool.

Machine learning applications often have many features some of
which are highly correlated. Linear regression is then liable to produce
a result which gives a large positive coefficient to values for one feature
and a large negative coefficient to values for another correlated feature.
We illustrated this with the prediction-of-salary example that was con-
sidered in Chapter 1.

One approach to reducing the magnitude of weights in a regression
model is Ridge regression. Another is Lasso regression. The latter has
the effect of reducing the weights of unimportant variables to zero.
Elastic Net regression uses the ideas underlying both Ridge and Lasso
regression and can be used to achieve the advantages of both (i.e., coef-

Linear and Logistic Regression 77

ficients that are smaller in magnitude and the elimination of unim-
portant variables).

Categorical variables can be accommodated in linear regression by
creating dummy variables, one for each category. The dummy variable
for an observation is set equal to one if the observation falls into the
category and zero otherwise.

Logistic regression, like regular linear regression, has been used in
empirical research for many years. It has become an important classifi-
cation tool for data scientists. Typically, there are two classes. One is
designated as “positive”; the other is designated as “negative.” The S-
shaped sigmoid function is used to define the probability of an observa-
tion falling into the positive class. An iterative search procedure is used
to find a linear function of the feature values that when substituted into
the sigmoid function does the best job in assigning a high probability to
positive outcomes and a low probability to negative outcomes. The re-
sults of using logistic regression on the test data set can be summarized
with what is termed a confusion matrix.

Once a logistic regression has been carried out it is necessary to de-
cide how the results will be used. We illustrated this with a lending de-
cision. It is necessary for the decision maker to define a Z-value. When
the probability of a positive outcome from the loan is estimated to be
greater than Z, the loan is accepted. When it is less than Z, the loan is
rejected. There is a trade-off between success at identifying good loans
and success at identifying loans that will default. Improving the latter
tends to worsen the former, and vice versa. This trade-off can be sum-
marized by a receiver operating curve (ROC) which relates the true pos-
itive rate (i.e., the percentage of the time a positive outcome is classified
as positive) and the false positive rate (the percentage of the time a
negative outcome is classified as positive).

A general point is we should not expect a machine learning model to
make perfect predictions. The key test is whether their predictions are
as good as, or better than, the predictions made by a human being. The
popularity of machine learning models in a variety of different fields
indicates that they must be passing this test.

SHORT CONCEPT QUESTIONS

3.1 What is the objective function in a “plain vanilla” linear regres-
sion?

3.2 How is the objective function changed for (a) Ridge regression,
(b) Lasso regression, and (c) Elastic Net regression?

78 Chapter 3

3.3 What is the main advantage of (a) Ridge regression and (b) Lasso
Regression?

3.4 In predicting house prices, how would you handle a feature which
is “yes” if a house has air conditioning and “no” if it does not?

3.5 In predicting house prices, how would you handle a feature which
describes the lot as “no slope”, “gentle slope”, “moderate slope”,
and “severe slope.”

3.6 In predicting house prices how would you handle a feature which
identifies the neighborhood of the house.

3.7 Explain the meaning of the term “regularization.” What is the dif-
ference between L1 and L2 regularization?

3.8 What is the sigmoid function?
3.9 What is the objective function in a logistic regression?
3.10 What is the definition of (a) the true positive rate, (b) the false

positive rate, and (c) the precision?
3.11 What is plotted in an ROC? Explain the trade-offs it describes.
3.12 Explain what is meant by the dummy variable trap.

EXERCISES

3.13 Using the validation set in Table 1.2, calculate tables similar to

Tables 3.2 and 3.3. Using scaled data calculate biases, weights,
and mean squared errors for a

 (a) Plain vanilla linear regression of salary on X, X2, X3, X4, and X5,
where X is age.
(b) Ridge regression of salary on X, X2, X3, X4, and X5 with  = 0.02,
0.05, and 0.1.
(c) Lasso regression of salary on X, X2, X3, X4, and X5 with  = 0.02,
0.05, and 0.1.

3.14 Suppose that, in the Lending Club data, we define default as the
positive outcome and no default as negative outcome.

(a) What effect does this have on the bias and weights? Show
that the probability of default and no-default are un-
changed.

(b) Choose Z values of 0.25, 0.20 and 0.15 for predicting de-
faults. Calculate confusion matrices and the ratios in Table
3.14.

(c) Use the Python implementation to confirm your answers to
(a) and (b) and verify that the AUC is still 0.6020.

Linear and Logistic Regression 79

3.15 Extend the Iowa house price example by including additional fea-
tures from the Original_Data.xlsx file in

www-2.rotman.utoronto.ca/~hull
As in the analysis in the text, choose the first 1,800 observations
as the training set, the next 600 as the validation set, and the re-
mainder as the test set. One additional feature should be Lot
Frontage and you should consider alternative approaches for

dealing with the missing observations. Another additional feature
should be the categorical feature Lot Shape. Choose a model for
prediction and calculate the accuracy for the test set. Repeat your
analysis by randomly spitting data into training set, validation
set, and test set.

3.16 The full data set for Lending Club is in the file Full_Data_Set.xlsx
(see www-2.rotman.utoronto.ca/~hull). In the analysis in this
chapter “good loans” are those listed as “Current” and defaulting
loans are those listed as “Charged Off” (see column O in
Full_Data_Set.xlsx). Other loans are not considered. Repeat the
analysis in this chapter assuming that “good loans” are those
listed as “Fully Paid” and defaulting loans are those listed as
“Charged Off.” Are your results better than those in this chapter?
Choose additional features from the full data set and report on
any improvements in your logistic regression results. (Make sure
the features you choose would have known values at the time the
loan was made.)

81

Chapter 4

Supervised Learning:
Decision Trees

In this chapter, we continue our discussion of supervised learning by
considering how decision trees can be used for prediction. Decision
trees have a number of potential advantages over linear or logistic re-
gression. For example:

 They correspond to the way many human beings think about a

problem and are easy to explain to non-specialists.
 There is no requirement that the relationship between the target

and the features be linear.
 The tree automatically selects the best features to make the pre-

diction.
 A decision tree is less sensitive to outlying observations than a

regression

The first part of this chapter will focus on the use of decision trees

for classification. We use the Lending Club data, introduced in Chapter
3, to illustrate the methodology. We build on the Bayes’ theorem mate-
rial in Chapter 1 to explain what is known as the naïve Bayesian classifi-
er. We then show how decision trees can be used for targets that are
continuous variables using the Iowa house price data. After that we ex-
plain how different machine learning algorithms can be combined to

82 Chapter 4

produce composite predictions. An important example of this is a ran-
dom forest, which is created by generating many different decision trees
and combining the results.

4.1 Nature of Decision Trees

A decision tree shows a step-by-step process for making predict-
ions. Figure 4.1 shows a simple example concerned with the classifica-
tion of applicants for a job into two categories:

 those who should get a job offer
 those who should be told “thanks but no thanks”

The example illustrates a key feature of decision trees. The decision is
made by looking at features one at a time rather than all at once. The
most important feature, relevant degree in our example, is considered
first. After that experience and communication skills are used by the
decision maker.

Figure 4.1 Simple example of a decision tree

An employer might subconsciously use a decision tree such as that in
Figure 4.1 without ever formalizing it. When decision trees are used as
a machine learning tool, the tree is constructed from historical data us-
ing an algorithm, as we will explain.

Relevant
degree?

No

Experience >
7 years?

Experience >
3 years?

Yes

Yes No

Good
communication

skills?

No job
offer

Yes No

Job
offer

No job
offer

Yes No

No job
offer

Yes No

Job
offer

No job
offer

Good
communication

skills?

Decision Trees 83

4.2 Information Gain Measures

What is the best feature to select at the first (root) node of a tree?
Let’s suppose that the purpose of our analysis is to replicate how em-
ployment decisions have been made in the past.1 The feature to put at
the root node is the one with the most information gain. Suppose we
have lots of data on job applicants and find that we made a job offer to
20% of them. Suppose further that 50% of job applicants have a rele-
vant degree. If both those with a relevant degree and those without a
relevant degree had a 20% chance of receiving a job offer, there would
be no information gain to knowing whether an applicant has a relevant
degree. Suppose instead that

 30% of those with relevant degrees received a job offer
 10% of those without a relevant degree received a job offer

There is then clearly some information gain to knowing whether an ap-
plicant has a relevant degree.

One measure of information gain is based on entropy. This is a
measure of uncertainty. If there are n outcomes and each outcome has a
probability of 𝑝𝑖(1 ≤ i ≤ n), entropy can be defined as

Entropy = −∑𝑝𝑖log⁡(𝑝𝑖)

𝑛

𝑖=1

Here, to be consistent with the machine learning literature, we define
“log” as log to the base 2.2 Initially in our example there is a 20% chance
of a job offer and an 80% chance of no job offer, so that:

Entropy = −[0.2 × log(0.2) + 0.8× log(0.8)] = 0.7219

If a candidate has a relevant degree, this becomes

Entropy = −[0.3 × log(0.3) + 0.7 × log(0.7)] = 0.8813

If a candidate does not have a relevant degree, it becomes

Entropy = −[0.1 × log(0.1) + 0.9 × log(0.9)] = 0.4690

1 A more sophisticated analysis might try to relate the performance of employees to
the features known at the time the employment decision was made.
2 The base used for the logarithm does not make a difference to the results as chang-
ing the base merely multiplies log(x) by the same constant for all x. When the base is
2, log(x) = y when 2𝑦 = 𝑥.

84 Chapter 4

Because 50% of candidates have a relevant degree, the expected value
of entropy, assuming that information on whether a candidate has a
relevant degree will be obtained, is

0.5 × 0.8813 + 0.5 × 0.4690 = 0.6751

A measure of the information gain from finding out whether a candidate
has a relevant degree is the expected uncertainty reduction. If uncer-
tainty is measured by entropy, this is

0.7219 − 0.6751 = 0.0468

When constructing the decision tree, we first search for the feature

that has the biggest information gain. This is put at the root of the tree.
For each branch emanating from the root we then search again for the
feature that has the biggest information gain. For both the “has relevant
degree” and “does not have relevant degree,” the feature that maximizes
the expected information gain (reduction in expected entropy) in our
example is the number of years of business experience. When the can-
didate has a relevant degree, the threshold for this feature that maxim-
izes the expected information gain is 3 years. At the second level of the
tree, the “has relevant degree” is therefore split into “experience > 3
years” and “experience ≤ 3 years” branches. For the branch corre-
sponding to the candidate not having a relevant degree the threshold
that maximizes the expected information gain is 7 years. The two sub-
sequent branches therefore are “experience > 7 years” and “experience
≤ 7 years.” We use the same procedure for building the rest of the tree.
Note that numeric features can be used more than once. For example,
the “Experience > 3 years” branch could lead to a further split into “Ex-
perience between 3 and 6 years” and “Experience greater than 6 years.”

An alternative to entropy for quantifying information gain is the Gini
measure. This is:

Gini = 1 −∑𝑝𝑖
2

𝑛

𝑖=1

It is used in the same way as entropy. In the example considered earlier,
initially

Gini = 1 − 0.22 − 0.82 = 0.32

Decision Trees 85

The expected Gini measure after finding out whether the candidate has
a relevant degree is

0.5 × (1 − 0.12 − 0.92) + 0.5 × (1 − 0.32 − 0.72) = 0.30

The information gain (reduction in the expected Gini measure) is 0.02.
Most of the time, the entropy and Gini measures give rise to similar
trees.

4.3 Application to Credit Decisions

We now apply the decision tree approach using the entropy measure

to the Lending Club data introduced in Chapter 3. It will be recalled that
there are 8,695 observations in the training set and 5,916 in the test set.
Of those in the training set, 7,196 were for good loans and 1,499 were
for loans that defaulted. Without any further information, the probabil-
ity of a good loan is therefore estimated from the training set as
7,196/8,695 or 82.76%. The initial entropy is therefore:

−0.8276 × log(0.8276) − 0.1724 × log(0.1724) = 0.6632

We will consider the same four features as in Chapter 3:

 A home ownership variable (= 1 if home owned; = 0 if rented)
 The applicant’s income
 The applicant’s debt to income ratio (dti)
 The applicant’s credit score (FICO)

The first step in constructing a tree is to calculate the expected in-

formation gain (reduction in expected entropy) from each feature. Of
the applicants, 59.14% own their own home while 40.86% rent. Loans
were good for 84.44% of those who owned their own homes and
80.33% of those who rented. The expected entropy if home ownership
(but no other feature) becomes known is therefore:

0.5914 × [−0.8444 × log(0.8444) − 0.1556 × log(0.1556)]

+0.4086 × [−0.8033 × log(0.8033) − 0.1967 × log⁡(0.1967)] = 0.6611

The expected reduction in entropy is therefore a modest 0.6632−0.6611
= 0.0020.

86 Chapter 4

The calculation of the expected entropy from income requires the
specification of a threshold income. Define:

P1: Probability that income is greater than the threshold
P2: Probability that, if income is greater than the threshold, the bor-

rower does not default
P3: Probability that, if income is less than the threshold, the bor-

rower does not default

The expected entropy is

𝑃1[−𝑃2log(𝑃2) − (1 − 𝑃2) log(1 − 𝑃2)]
+(1 − 𝑃1)[−𝑃3log(𝑃3) − (1 − 𝑃3) log(1 − 𝑃3)]

We carry out an iterative search to determine the threshold income that
minimizes this expected entropy for the training set. It turns out that
this is $85,202. For this value of the threshold, P1 = 29.93%, P2 =
87.82%, and P3 = 80.60% and expected entropy is 0.6573.

The results of all the information gain calculations are shown in Ta-
ble 4.1. It can be seen that the FICO score with a threshold of 717.5 has
the greatest information gain. It is therefore put at the root node of the
tree. The initial branches of the tree correspond to FICO > 717.5 and
FICO ≤ 717.5.

Table 4.1 Information gain from features to determine the root node
(see Excel decision tree file for Lending Club case)

Feature Threshold

value
Expected
entropy

Information
gain

Home Ownership N.A. 0.6611 0.0020
Income ($’000s) 85.202 0.6573 0.0058
Debt to income (%) 19.87 0.6601 0.0030
Credit score (FICO) 717.5 0.6543 0.0088

For the next level of the tree we repeat the process. Table 4.2 shows

the calculations for FICO > 717.5. In this case, the starting expected en-
tropy is 0.4402. We must calculate the information gain of each of the
three remaining features and consider the possibility of a further
branch involving the FICO score (i.e., splitting the range of FICO scores
above 717.5 into two categories) It turns out that income has the high-
est information gain and is therefore the feature that should be consid-
ered next, The threshold value of income is $48,750.

Decision Trees 87

Table 4.2 Information gain from features to determine the second lev-
el of the tree when FICO > 717.5 (see Excel file and Python implementa-
tion)

Feature Threshold

value
Expected
entropy

Information
gain

Home ownership N.A. 0.4400 0.0003
Income ($’000s) 48.75 0.4330 0.0072
Debt to income (%) 21.13 0.4379 0.0023
FICO score 789 0.4354 0.0048

Table 4.3 shows the results when FICO ≤ 717.5. In this case the

starting entropy is 0.7043. Income proves to be the feature with the
most information gain and the threshold is $85,202. (Note that it is not
always the case that the feature chosen is the same for both branches
emanating from a node. Also, when the feature chosen does happen to
be the same for both branches, it will not in general have the same
threshold for both branches.)

Table 4.3 Information gain of features to determine the second level of
tree when FICO ≤ 717.5 (see Excel file and Python implementation)

Feature Threshold

value
Expected
entropy

Information
gain

Home ownership N.A. 0.7026 0.0017
Income ($’000s) 85.202 0.6989 0.0055
Debt to income (%) 16.80 0.7013 0.0030
FICO score 682 0.7019 0.0025

The construction of the tree continues in this way. The full tree pro-

duced by Sklearn’s DecisionTreeClassifier is summarized in Figure 4.2.
The final points reached by the tree (shown as ovals) are referred to as
leaves. The numbers shown in the leaves in Figure 4.2 are the predicted
probabilities of default. For example, if FICO > 717.5, Income > 48.75,
and dti > 21.885, the estimated probability of no-default is 0.900. This is
because there were 379 observations in the training set satisfying these
conditions and 341 of them were good loans (341/379 = 0.900).

In determining the tree, it is necessary to set a number of hyperpa-
rameters. In this case:

88 Chapter 4

 The maximum depth of the tree was set equal to 4. This
means that there were at most four levels at which the tree
splits.

 The minimum number of observations necessary for a split
was set to 1,000.

The second hyperparameter explains why the tree sometimes stops
before reaching the fourth level. For example, there are only 374 obser-
vations where FICO > 717.5 and income ≤ 48.75; there are only 893 ob-
servations where FICO > 717.5, income > 48.75, and dti ≤ 21.885; and
there are only 379 observations where FICO > 717.5, income > 48.75,
and dti > 21.885.

Figure 4.2 Decision tree for Lending Club. Numbers at the end of the
tree are the probability of a good loan for training set

As with logistic regression we need a Z-value to define whether a
loan is acceptable. Similarly to Section 3.11, we consider Z-values of
0.75, 0.80, and 0.85. An examination of Figure 4.2 shows that these
three Z-values correspond to the following criteria:

 Z = 0.75: predict that all loans are good except those for which (a)

income ≤ $85,202, dti > 16.545, and FICO ≤ 687.5 and (b) in-
come ≤ $32,802, dti ≤ 16.545, and FICO ≤ 717.5.

 Z = 0.80: Same as Z = 0.75 except that loans where FICO ≤ 717.5,
income > $85,202, and dti > 25.055 are not considered good.

FICO ≤ 717.5

Income ≤ 48.75

dti ≤ 21.885

Income ≤ 85.202

dti ≤ 25.055dti ≤ 16.545

FICO ≤ 677.5

0.853

0.9360.784FICO ≤ 687.5Income ≤ 32.802 0.900

0.8920.8520.8120.7450.8320.725

yes

yes

yes

yes

yes

yes yes

yes

yes

no

no

no

nono

no

nono no

Decision Trees 89

 Z=0.85: Predict loans are good loans when (a) FICO > 717.5 or (b)
FICO ≤ 717.5, income > $85,202, and dti ≤ 25.055

It is interesting to note that a tree can give inconsistent predictions.

For example, when FICO=700, dti=10, and Income =30, the no-default
probability predicted by the tree is 0.725. But when the dti value is
changed from 10 to 20 (a worse value) the no-default probability in-
creases to 0.812.

Tables 4.4 to 4.6 give confusion matrices for the test set when Z is
0.75, 0.80, and 0.85, respectively, and Table 4.7 provides the ratios in-
troduced in Section 3.11.

Figure 4.3 shows the ROC curve. The marked points correspond to
11 ranges within which the threshold Z can be chosen. If Z ≤ 0.725, all
loans are accepted; if 0.725 < Z ≤ 0.745, we accept all loans except those
corresponding to the 0.725 leaf in Figure 4.2; if 0.745 < Z ≤ 0.784 we
accept all loans except those corresponding to the 0.725 and 0.745
leaves in Figure 4.2; and so on. Finally, if Z >0.936 we accept no loans.
The AUC calculated in the Python implementation is 0.5948, marginally
worse than the 0.6020 calculated for the logistic regression model.

Table 4.4 Confusion matrix for test set when Z = 0.75 (See Python or
Excel files)

 Predict positive

(no default)
Predict negative

(default)
Outcome positive

(no default)
62.42% 19.69%

Outcome negative
(default)

11.07% 6.81%

Table 4.5 Confusion matrix for test set when Z = 0.80 (See Python or
Excel files)

 Predict positive

(no default)
Predict negative

 (default)
Outcome positive

(no default)
59.47% 22.65%

Outcome negative
(default)

10.45% 7.44%

90 Chapter 4

Table 4.6 Confusion matrix for test set when Z = 0.85 (See Python or
Excel files)

 Predict positive

 (no default)
Predict negative

 (default)
Outcome positive

(no default)
32.15% 49.97%

Outcome negative
(default)

4.73% 13.15%

Table 4.7 Ratios calculated from Tables 4.4 to 4.6 (See Python or Excel
files)

 Z=0.75 Z=0.80 Z=0.85

Accuracy 69.24% 66.90% 45.30%
True Positive Rate 76.02% 72.42% 39.15%
True Negative Rate 38.09% 41.59% 73.53%
False Positive Rate 61.91% 58.41% 26.47%
Precision 84.94% 85.06% 87.17%
F-score 80.23% 78.23% 54.03%

Figure 4.3 Trade-off between true positive rate and false positive rate
for decision tree approach (see Python or Excel files)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
si

ti
v

e
 R

a
te

False Positive Rate

Decision Trees 91

4.4 The Naïve Bayes Classifier

We introduced Bayes’ theorem in Chapter 1. Bayesian learning in-

volves using Bayes’ theorem to update probabilities. For example, Chap-
ter 1 showed how Bayes’ theorem can be used in the identification of
fraudulent transactions.

The tree in Figure 4.2 can be regarded as an example of Bayesian
learning. The probability of a good loan in the training set with no in-
formation about the features is 0.8276. The probability that the FICO
score will be greater than 717.5, conditional on the loan being good, is
0.2079 and the unconditional probability that FICO is greater than
717.5 is 0.1893. From Bayes’ theorem the probability of a good loan
conditional on FICO > 717.5 is:

=
Prob(FICO > 717.5|good⁡loan) × Prob(good⁡loan)

Prob(FICO > 717.5)

=
0.2079 × 0.8276

0.1893
= 0.9089

Other (more complicated) Bayesian calculations can be used to up-

date probabilities further. For example, at the next step we can calculate
the probability of a good loan conditional on both FICO > 717.5 and In-
come > $48,750.

The Naïve Bayes Classifier is a procedure that can be used if the val-
ues of the features for observations classified in a particular way can be
assumed to be independent. If C is a classification result and 𝑥𝑗 is the

value of the jth feature (1≤ j ≤ m), we know from Bayes theorem that

Prob(𝐶|𝑥1, 𝑥2, … , 𝑥𝑚) =
Prob(𝑥1, 𝑥2, … , 𝑥𝑚|𝐶)

Prob(𝑥1,𝑥2,…𝑥𝑚)
Prob(C)

Because of the independence assumption this reduces to

Prob(𝐶|𝑥1, 𝑥2, … , 𝑥𝑚) =
Prob(𝑥1|𝐶)Prob(𝑥2|𝐶)…Prob(𝑥𝑚|𝐶)

Prob(𝑥1,𝑥2,…𝑥𝑚)
Prob(C)

This shows that if we know the probability of each feature conditional
on the classification, we can calculate probability of the classification
conditional on a particular mixture of features occurring.

As a simple example of this, suppose that the unconditional probabil-
ity of a good loan is 85% and that there are three independent features

92 Chapter 4

when a loan is being assessed. These are:

 Whether the applicant owns a house (denoted by H). The prob-

ability of the applicant owning a house if the loan is good is 60%
whereas the probability of the applicant owning her own house
if the loan defaults is 50%.

 Whether the applicant has been employed for more than one
year (denoted by E). The probability of the applicant being em-
ployed for more than one year if the loan is good is 70% where-
as the probability of this if the loan defaults is 60%.

 Whether there are two applicants or only one (denoted by T).
The probability of two applicants when the loan is good is 20%
whereas the probability of two applicants when the loan de-
faults is 10%.

Consider an applicant that is able to check all three boxes. She owns

a house, she has been employed for more than one year, and she is one
of two applicants for the same loan. Assuming the features are inde-
pendent across good loans and across defaulting loans:

⁡Prob(Good⁡Loan|H, E, T) =
0.6 × 0.7 × 0.2

Prob(H⁡and⁡E⁡and⁡T)
× 0.85⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
0.0714

Prob(H⁡and⁡E⁡and⁡T)

Prob(Defaulting⁡Loan|H, E, T) =
0.5 × 0.6 × 0.1

Prob(H⁡and⁡E⁡and⁡T)
× 0.15⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
0.0045

Prob(H⁡and⁡E⁡and⁡T)

Because the probability of a good loan and the probability of a default-
ing loan must add to one, we do not need to calculate the value of Prob
(H and E and T). The probability of a good loan is

0.0714

0.0714 + 0.0045
= 0.941

and the probability of a defaulting loan is

Decision Trees 93

0.0045

0.0714 + 0.0045
= 0.059

For an applicant who checks all three boxes the probability of a good
loan rises from 85% to just over 94%.

We can also use the naïve Bayes classifier with continuous distribu-
tions. Suppose we want to use the data in Chapter 3 to produce a loan
forecast using two features: FICO score and income. We assume that
these features are independent both for data on good loans and data on
defaulting loans.3 Table 4.8 shows the mean and standard deviation of
the FICO score and income conditional on a good loan and a defaulting
loan.

Table 4.8 Statistics on FICO score and income conditional on loan re-
sult. Income is measured in $’000s

Loan result Mean

FICO
SD

FICO
Mean

Income
SD In-
come

Good loan 696.19 31.29 79.83 59.24
Defaulting loan 686.65 24.18 68.47 48.81

Consider an individual who has a FICO score of 720 and an income

(‘000s) of 100. Conditional on a loan being good the FICO score has a
mean of 696.19 and a standard deviation of 31.29. Assuming a normal
distribution, the probability density for the individual’s FICO score con-
ditional on the loan being good is

1

√2𝜋 × 31.29
exp(−

(720 − 696.19)2

2 × 31.292
) = 0.00954

Similarly, assuming a normal distribution, the probability density for

income conditional on the loan being good is4

1

√2𝜋 × 59.24
exp(−

(100 − 79.83)2

2 × 59.242
) = 0.00636

3 The independence assumption is an approximation. For loans that defaulted, the
correlation between credit score and income is about 0.07 and, for loans that are
good, it is about 0.11.
4 It would be better to assume a lognormal distribution for income. We have not
done this to keep the example simple.

94 Chapter 4

The probability density for the credit score conditional on the loan
defaulting is

1

√2𝜋 × 24.18
exp(−

(720 − 686.65)2

2 × 24.182
) = 0.00637

Similarly, the probability density for the income conditional on the loan
defaulting is

1

√2𝜋 × 48.81
exp(−

(100 − 68.47)2

2 × 48.812
) = 0.00663

The unconditional probability of the loan being good is 0.8276 and

the unconditional probability of it being bad is 0.1724. The probability
of a loan being good conditional on a credit score of 720 and an income
($’000) of 100 is

0.00954 × 0.00636 × 0.8276

𝑄
=
5.020 × 10−5

𝑄

where Q is the probability density of the observation ($100,000 income
and credit score equal to 720).

The corresponding conditional probability of a bad loan is

0.00637 × 0.00663 × 0.1724

𝑄
=
0.729 × 10−5

𝑄

Because the two probabilities must add up to one we know that the
probability of the loan being good is 5.020/(5.020+0.729) or 0.873.
(One of the attractive features of the naïve Bayes classifier is that we do
not need to calculate Q to obtain this result.)

The naïve Bayes classifier is easy to use when there are a large num-
ber of features. It makes a simple set of assumptions. These assump-
tions are unlikely to be completely true in practice. However, the ap-
proach has been found to be useful in a variety of situations. For exam-
ple, it is quite effective in identifying spam when word frequencies are
used as features. (See Chapter 8 for the use of the naïve Bayes Classifier
in natural language processing.)

Decision Trees 95

 4.5 Continuous Target Variables

So far we have considered the use of decision trees for classification.

We now describe how they can be used to predict the value of a contin-
uous variable. Suppose that the feature at the root node is X and the
threshold value for X is Z. We choose X and Z to minimize the expected
mean squared error (mse) in the prediction of the target for the training
set. In other words, we minimize

Prob(𝑋 ≥ 𝑍) × (mse⁡if⁡𝑋 ≥ 𝑍) + Prob(𝑋 < 𝑍) × (mse⁡if⁡𝑋 < 𝑍)

The feature at the next node and its threshold are chosen similarly. The
value predicted at a tree leaf is the average of the values for the obser-
vations corresponding to the leaf.

We will illustrate this procedure for the Iowa house price data con-
sidered in Chapter 3. To keep the example manageable, we consider
only two features:

 Overall quality (scale 1 to 10)
 Living area (square feet)

(These were identified as the most important features by linear regres-
sion in Chapter 3.) As in Chapter 3 we divide up the data (2,908 obser-
vations in total) so that there are 1,800 observations in the training set,
600 in the validation set, and 508 in the test set. The mean and standard
deviation of the prices of houses in the training set (‘000s) are $180.817
and $77.201.

First, we determine the feature to put at the root node and its
threshold. For each of the two features, we use an iterative search pro-
cedure to calculate the optimal threshold. The results are shown in Ta-
ble 4.9. The expected mse is lowest for overall quality which has an op-
timal threshold of 7.5. This feature and its threshold therefore define
the root node. (Because overall quality is an integer all thresholds be-
tween 7 and 8 are equivalent. A similar point applies to living area.)

Table 4.10 considers the best feature when overall quality ≤ 7.5. It
turns out that, even though overall quality has been split at the root
node, it is best to split it again at the second level using a threshold of
6.5. Table 4.11 shows that when overall quality > 7.5, it is also best to
split overall quality again, this time with a threshold of 8.5. Following
the two splits on overall quality, it is optimal to split living area at each
of the decision points encountered at the third level.

96 Chapter 4

Table 4.9 Expected mean squared error at root node. House prices are
measured in thousands of dollars for the purposes of calculating mse
(see Excel decision tree file for Iowa house price case). Threshold = Z.

Feature Z No. of

obs < Z
mse of
obs < Z

No. of
obs ≥ Z

mse of
obs ≥ Z

E(mse)

Overall
Quality

7.5 1,512 2,376 288 7,312 3,166

Living
(sq. ft.)

1,482.5 949 1,451 851 6,824 3,991

Table 4.10 Expected mean squared error at second level when overall
quality ≤ 7.5. House prices are measured in thousands of dollars for the
purposes of calculating mse (see Excel decision tree file for Iowa house
price case). Threshold = Z.

Feature Z No. of

obs < Z
mse of
obs < Z

No. of
obs ≥ Z

mse of
obs ≥ Z

E(mse)

Overall
Quality

6.5 1,122 1,433 390 1,939 1,564

Living
(sq. ft.)

1,412.5 814 1,109 698 2,198 1,612

Table 4.11 Expected mean squared error at second level when overall
quality >7.5. House prices are measured in thousands of dollars for the
purposes of calculating mse (see Excel decision tree file for Iowa house
price case). Threshold = Z.

Feature Z No. of
obs < Z

mse of
obs < Z

No. of
obs ≥ Z

mse of
obs ≥ Z

E(mse)

Overall
Quality

8.5 214 3,857 74 8,043 4,933

Living
(sq. ft.)

1,971.5 165 3,012 123 8,426 5,324

The tree produced by Sklearn’s DecisionTreeRegressor is shown in
Figure 4.4. The maximum depth of the tree was specified as three. The
average house prices and root mean squared errors are shown on the

Decision Trees 97

tree for each of the leaf nodes (see circles). The overall root mean
squared error of the predictions for the training set, validation set, and
test set are shown in Table 4.12. It can be seen that the model general-
izes quite well.

The root mean squared errors are quite large because the tree in ef-
fect divides all houses into only eight clusters. With more features and
more depth, more clusters of houses would be considered. However, the
number of houses in some clusters would then be quite small and the
calculated average house price might be unreliable. For better results a
larger data set is likely to be necessary.

Figure 4.4 Decision tree for calculating house prices. The house price
predictions and the rmse’s are shown in the final (circular) leaf nodes)

Table 4.12 Comparison of results for training set, validation set, and
test set (see Python)

 Root mean squared error
of house price ($’000s)

Training set 38.66
Validation set 40.46
Test set 39.05

Quality ≤ 7.5

Quality ≤ 6.5 Quality ≤ 8.5

Liv Area ≤ 1,378 Liv Area ≤ 1,822 Liv Area ≤ 1,969 Liv Area ≤ 2,229

125.5
(29.3)

165.6
(36.8)

191.7
(34.9)

239.6
(44.8)

248.1
(46.6)

313.0
(62.8)

335.5
(48.7)

457.4
(86.8)

yes

yes

yes yes

yes

yes yes

no

no

no

no

nono no

98 Chapter 4

Finally, note that we can adjust our calculations so that more than
two branches are considered at a node. This is appropriate for a cate-
gorical feature with more than two possible values. For features that
can take a range of values, we can consider N branches (N > 2) at a node
and maximize the information gain over N − 1 thresholds.

4.6 Ensemble Learning

When the predictions from several different machine learning algo-

rithms are aggregated, the result can be better than the predictions
from any one of the algorithms. The improvement in the predictions
depends on the correlation between the estimates produced from the
algorithms. If two algorithms always produce the same predictions,
there is clearly nothing to be gained by using both of them. But, if this is
not the case, there is potentially some value in producing a composite
prediction that uses the results from both algorithms. Using two or
more algorithms to make predictions is known as ensemble learning.

Suppose that you have a biased coin which when tossed has a 52%
chance of giving one result (heads or tails, you do not know which) and
a 48% of giving the other result. If you want to know whether it is heads
or tails that is more likely, you could toss the coin once, but this would
not give much guidance. If you toss the coin 1,000 times there is a prob-
ability of about 90% that, if heads has a probability of 0.52, you will see
more heads than tails. Similarly, if it is tails that has a probability of
0.52, there is a probability of about 90% that you will see more tails
than heads. This illustrates that 1,000 weak learners can be combined
to produce a learner where the predictions are reliable. Of course, in
this example the learners are independent of each other. In machine
learning different learning algorithms are unlikely to be totally inde-
pendent and so the prediction improvement will not in general be as
good as for the coin tossing example.

There are a number of ways of combining predictions. Sometimes a
(possibly weighted) average of the predictions is appropriate. When
each learner recommends a particular classification, we can use majori-
ty voting (i.e., the class that is recommended most can be chosen).

Bagging
Bagging involves using the same algorithm but training it on differ-

ent random samples of the training set or the features. We might have
200,000 observations in the training set and randomly sample 100,000
observations 500 times to get 500 subsets of the training set. We then
train the model on each subset in the usual way. The sampling is nor-

Decision Trees 99

mally done with replacement so that the same observation may appear
more than once in a subset. (If the sampling is done without replace-
ment the method is referred to as pasting.)

We can also create many new models by sampling (without re-
placement) from the features. For example, if there are 50 features, we
could create 100 models each with 25 features. Sometimes models are
created by random sampling from both features and observations.

Random Forests
A random forest as its name implies is an ensemble of decision trees.

The trees are often created by sampling from the features or observa-
tions using the bagging approach just mentioned. Each tree gives a
suboptimal result but overall the prediction is usually improved.

Another approach to creating a random forest is to randomize the
thresholds used for features rather than search for the best possible
threshold. This can be computationally efficient as finding the optimal
feature threshold at each node can be time consuming.

The importance of each feature in a random forest can be calculated
as the weighted average information gain (as measured by entropy or
Gini) with weights that are proportional to the number of observations
considered at a node.

Boosting
Boosting refers to an ensemble method where prediction models are

used sequentially, each trying to correct the errors in the previous one.
Consider the loan classification problem we looked at earlier. We

might create a first classification in the usual way. We then increase the
weight given to misclassified observations and create a new set of pre-
dictions; and so on. The predictions are combined in the usual way ex-
cept that the weight given to a prediction depends on its accuracy. This
procedure is known as AdaBoost.

A different approach from AdaBoost is gradient boosting. At each it-
eration, gradient boosting tries to fit a new predictor to the errors made
by the previous predictor. Suppose there are three iterations. The final
prediction is the sum of the three predictors. This is because the second
predictor estimates errors in the first predictor and the third predictor
estimates errors in a predictor that equals the sum of the first two pre-
dictors.

100 Chapter 4

Summary

A decision tree is an algorithm for classification or predicting the

value of variable. Features are considered in order of the information
gain they provide. For classification, two alternative measures of infor-
mation gain are entropy and Gini. When the value of a variable is being
predicted, the information gain is measured by the improvement in ex-
pected mean squared error.

In the case of a categorical feature, the information gain arises from
knowledge of the feature’s label (e.g., whether a potential borrower’s
home is owned or rented). In the case of numerical features, it is neces-
sary to determine one (or more) thresholds defining two (or more)
ranges for the feature’s value. These thresholds are determined so that
the expected information gain is maximized.

A decision tree algorithm first determines the optimal root node of
the tree using the “maximize information gain” criterion we have just
described. It then proceeds to do the same for subsequent nodes. The
ends of the final branches of the tree are referred to a leaf nodes. When
the tree is used for classification, the leaf nodes contain the probabili-
ties of each category being the correct. When a numerical variable is
being predicted, the leaf nodes give the average value of the target. The
geometry of the tree is determined with the training set, but statistics
concerned with its accuracy should (as always in machine learning)
come from the test set.

Sometimes more than one machine learning algorithm is used to
make predictions. The results can then be combined to produce a com-
posite prediction. This is referred to as the use of ensemble methods. A
random forest machine learning algorithm is created by building many
different trees and combining the results. The trees can be created by
sampling from the observations or from the features (or both). They can
also be created by randomizing the thresholds.

Bagging is the term used when different subsets of the observations
or features in the training set are used to create multiple models. Boost-
ing is a version of ensemble where prediction models are chosen se-
quentially, and each model is designed to correct errors in the previous
model. In classification one way of doing this is to increase the weight
of observations that are misclassified. Another is to use one machine
learning model to predict the errors given by another model.

Decision Trees 101

SHORT CONCEPT QUESTIONS

4.1 What are the main differences between the decision tree ap-
proach to prediction and the regression approach?

4.2 How is entropy defined?
4.3 How is the Gini measure defined?
4.4 How is information gain measured?
4.5 How do you choose the thresholds for a numerical variable in a

decision tree?
4.6 What is the assumption underlying the naïve Bayes classifier?
4.7 What is an ensemble method?
4.8 What is a random forest?
4.9 Explain the difference between bagging and boosting.
4.10 “The decision tree algorithm has the advantage that it is trans-

parent.” Explain this comment.

EXERCISES

4.11 What strategy corresponds to a Z-value of 0.9 in Figure 4.2? What
is the confusion matrix when this Z-value is used on the test data?

4.12 For the naïve Bayes classifier data in Table 4.8, what is the prob-
ability of a default when the credit score is 660 and the income is
$40,000?

4.13 Python exercise: Similarly, to Exercise 3.16, determine the effect
on the decision tree analysis of defining good loans as “Fully Paid”
rather than “Current.” Investigate the effect of adding more fea-
tures to the analysis.

4.14 Test the effect of changing (a) the maximum depth of the tree and
(b) the minimum number of samples necessary for a split on the
decision tree results for Lending Club using Sklearn’s Decision-
TreeClassifier.

4.15 Choose an extra feature in addition to the two considered in Fig-
ure 4.4 and construct a tree using all three features. Compare the
results with those in Section 4.5. Use Sklearn’s DecisionTree-
Regressor.

103

Chapter 5

Supervised Learning: SVMs

This chapter considers another popular category of supervised
learning models known as a support vector machines (SVMs). Like deci-
sion trees, SVMs can be used for either classification or for the predic-
tion of a continuous variable.

We first consider linear classification where a linear function of the
feature values is used to separate observations into two categories. We
then move on to explain how non-linear separation can be achieved.
Finally, we show that, by reversing the objective, we can use SVM for
predicting the value of a continuous variable, rather than for classifica-
tion.

5.1 Linear SVM Classification

To describe how linear classification works, we consider a simple

situation where loans are classified into good loans and defaulting loans
by considering only two features: credit score and income of the bor-
rower. A small amount of illustrative data is shown in Table 5.1. This is
a balanced data set in that there are five good loans and five loans that
defaulted. SVM does not work well for a seriously imbalanced data set

104 Chapter 5

and procedures such as those mentioned in Section 3.10 sometimes
have to be used to create a balanced data set.

Table 5.1 Loan data set to illustrate SVM

Credit
score

Adjusted credit
score

Income
(‘000s)

Default = 0;
good loan = 1

660 40 30 0
650 30 55 0
650 30 63 0
700 80 35 0
720 100 28 0
650 30 140 1
650 30 100 1
710 90 95 1
740 120 64 1
770 150 63 1

The first step is to normalize the data so that the weight given to

each feature is the same. In this case, we will take a simple approach
and subtract 620 from the credit score. This provides approximate
normalization because the adjusted credit scores range from 30 to 150
while incomes range from 28 to 140.

Figure 5.1 gives a scatter plot of the loans. Defaulting loans (repre-
sented by the circles) tend to be closer to the origin than the good loans
(represented by the squares). We can separate the observations into
two groups by drawing a straight line such as the one shown in the fig-
ure. Loans that are to the north-east of the line are good. Those to the
south-west of the line default. (Note that this is an idealized example. As
we discuss later, the sort of perfect separation indicated in Figure 5.1 is
not usually possible.)

There is some uncertainty about where the line in Figure 5.1 should
be positioned. We could move it sideways or change its gradient a little
and still achieve perfect separation. SVM handles this uncertainty by
using a pathway. The optimal pathway is the one that has maximum
width. The line separating the observations is the middle of the path-
way.

Figure 5.2 shows the optimal pathway for the data in Table 5.1. Note
that adding more observations that are correctly classified by the path-
way (i.e., good loans to the north-east of the pathway or defaulting loans
to the south-west) does not affect the optimal pathway. The critical
points are those on the edge of the pathway. These are referred to as

SVM 105

support vectors. For the data we are considering the support vectors are
those defined by the third, seventh, and ninth observations.

Figure 5.1 Data set in Table 5.1. Circles represent loans that defaulted
while squares represent good loans

Figure 5.2 Optimal pathway for data in Table 5.1

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160

A
d

ju
st

e
d

 C
re

d
it

 S
co

re
 (

=
 F

IC
O

−
6

2
0

)

Income ('000s)

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160

A
d

ju
st

e
d

 C
re

d
it

 S
co

re
 (

=
 F

IC
O

−
6

2
0

)

Income ('000s)

106 Chapter 5

The solid line in Figure 5.2 is the center of the pathway. It is the line
that would be used to separate new observations into those that are
predicted to be good loans and those that are expected to default.

To show how the optimal pathway can be determined in the two-
feature case, we suppose that the features are 𝑥1 and 𝑥2, and the equa-
tions for the upper and lower edges of the pathway are:1

𝑤1𝑥1 + 𝑤2𝑥2 = 𝑏𝑢 (5.1)

and
𝑤1𝑥1 + 𝑤2𝑥2 = 𝑏𝑑 (5.2)

where 𝑤1, 𝑤2, 𝑏𝑢, and 𝑏𝑑 are constants. These definitions are illustrated
in Figure 5.3.

Figure 5.3 Calculation of path width in general situation

Defining the angle  as indicated, we see from the lower triangle in-
volving  in Figure 5.3 that the width of the path, P, can be written as

1 Note that this material is often presented with bu and bd having the opposite sign
to that here. This is just a notational issue and makes no difference to the model.

x1

x2

0

0

w1x1+w2x2=bu

w1x1+w2x2=bd

𝑏𝑑

𝑤1

𝑏𝑢

𝑤1

𝑏𝑑

𝑤2

𝑏𝑢

𝑤2





SVM 107

𝑃 = (
𝑏𝑢

𝑤1
−

𝑏𝑑

𝑤1
) sin θ = (

𝑏𝑢 − 𝑏𝑑

𝑤1
) sin θ

so that

sin θ =
𝑃𝑤1

𝑏𝑢 − 𝑏𝑑

From the upper triangle involving the width of the path, P, can al-

so be written as

𝑃 = (
𝑏𝑢

𝑤2
−

𝑏𝑑

𝑤2
) cos θ = (

𝑏𝑢 − 𝑏𝑑

𝑤2
) cos θ

so that

cos θ =
𝑃𝑤2

𝑏𝑢 − 𝑏𝑑

Because sin2 θ + cos2 θ = 1,

(
𝑃𝑤1

𝑏𝑢 − 𝑏𝑑
)

2

+ (
𝑃𝑤2

𝑏𝑢 − 𝑏𝑑
)

2

= 1

so that

𝑃 =
𝑏𝑢 − 𝑏𝑑

√𝑤1
2 + 𝑤2

2

We can multiply 𝑤1, 𝑤2, 𝑏𝑢, and 𝑏𝑑 by the same constant without

changing the equations (5.1) and (5.2) for the upper and lower bounda-
ry of the path. We can choose this constant so that 𝑏𝑢 − 𝑏𝑑 = 2. We can
then set

𝑏𝑢 = 𝑏 + 1 (5.3)

and

𝑏𝑑 = 𝑏 − 1 (5.4)

The equation for the line defining the middle of the pathway becomes

𝑤1𝑥1 + 𝑤2𝑥2 = 𝑏

and the width of the pathway becomes

108 Chapter 5

𝑃 =
2

√𝑤1
2 + 𝑤2

2

This shows that the width of the path can be maximized by minimiz-

ing by √𝑤1
2 + 𝑤2

2, or equivalently 𝑤1
2 + 𝑤2

2 , subject to the constraint
that the pathway separates the observations into the two classes and
equations (5.1) to (5.4) are satisfied.

For the example in Table 5.1, we can set 𝑥1 equal to income and 𝑥2
equal to credit score. All good loans must be to the north-east of the
pathway while all defaulting loans must be to the south-west of the
pathway. This means that, if a loan is good, its income and credit score
must satisfy

𝑤1𝑥1 + 𝑤2𝑥2 ≥ 𝑏 + 1

while if the loan defaults they must satisfy

𝑤1𝑥1 + 𝑤2𝑥2 ≤ 𝑏 − 1

From Table 5.1, we must therefore have

 30𝑤1 + 40𝑤2 ≤ 𝑏 − 1

 55𝑤1 + 30𝑤2 ≤ 𝑏 − 1

 63𝑤1 + 30𝑤2 ≤ 𝑏 − 1

 35𝑤1 + 80𝑤2 ≤ 𝑏 − 1

28𝑤1 + 100𝑤2 ≤ 𝑏 − 1

140𝑤1 + 30𝑤2 ≥ 𝑏 + 1

100𝑤1 + 30𝑤2 ≥ 𝑏 + 1

 95𝑤1 + 90𝑤2 ≥ 𝑏 + 1

64𝑤1 + 120𝑤2 ≥ 𝑏 + 1

 63𝑤1 + 150𝑤2 ≥ 𝑏 + 1

Minimizing 𝑤1

2 + 𝑤2
2 subject to these constraints gives b = 5.054, w1

= 0.05405, w2 = 0.02162. The middle of pathway in Figure 5.2 is there-
fore

0.05405𝑥1 + 0.02162𝑥2 = 5.054

SVM 109

This is the line that would be used to separate good loans from bad
loans. The width of the pathway, P, is 34.35.

The analysis we have given can be extended to more than two fea-
tures. If we have m features, the objective function to be minimized is

∑ 𝑤𝑗
2

𝑚

𝑗=1

If xij is the value of the jth feature for the ith observation, the constraint
that must be satisfied is

∑ 𝑤𝑗𝑥𝑖𝑗

𝑚

𝑗=1

≥ 𝑏 + 1

when there is a positive outcome for observation i (which in our exam-
ple occurs when the loan does not default) and

∑ 𝑤𝑗𝑥𝑖𝑗

𝑚

𝑗=1

≤ 𝑏 − 1

When there is a negative outcome for observation i (which in our ex-
ample occurs when a loan defaults).

Minimizing the objective function subject to the constraints involves
a standard numerical procedure known as quadratic programming.

5.2 Modification for Soft Margin

What we have considered so far is referred to as hard margin classi-

fication because the pathway divides the observations perfectly with no
violations. In practice, there are usually some violations (i.e., observa-
tions that are within the pathway or on the wrong side of the pathway)
The problem is then referred to as soft margin classification and there is
a trade-off between the width of the pathway and the severity of viola-
tions. As the pathway becomes wider the violations become greater.

Continuing with the notation that 𝑥𝑖𝑗 is the value of the jth feature

for the ith observation, we define:

110 Chapter 5

𝑧𝑖 = max (𝑏 + 1 − ∑ 𝑤𝑗𝑥𝑖𝑗

𝑚

𝑗=1

, 0) if positive outcome

𝑧𝑖 = max (∑ 𝑤𝑗𝑥𝑖𝑗

𝑚

𝑗=1

− (𝑏 − 1), 0) if negative outcome

The variable zi is a measure of the extent to which observation i violates
the hard margin conditions at the end of the previous section.

The machine learning algorithm involves a hyperparameter, C, which
defines the trade-off between the width of the pathway and violations.
The objective function to be minimized is

𝐶 ∑ 𝑧𝑖

𝑛

𝑖=1

+ ∑ 𝑤𝑗
2

𝑚

𝑗=1

where n is the number of observations. Like the hard margin case, this
can be set up as a quadratic programming problem.

To illustrate the soft margin classification problem, we change the
example in Table 5.1 so that (a) the adjusted credit score for the second
loan is 140 rather than 30 and (b) the income for the eighth loan is 60
rather than 95. The new data is in Table 5.2.

Table 5.2 Loan data set for illustrating soft margin classification

Credit
score

Adjusted credit
score

Income
(‘000s)

Default =0;
good loan=1

660 40 30 0
650 140 55 0
650 30 63 0
700 80 35 0
720 100 28 0
650 30 140 1
650 30 100 1
710 90 60 1
740 120 64 1
770 150 63 1

SVM 111

Figure 5.4 shows the new data together with the optimal path when
C = 0.001. It shows that one observation (the first one) is to the south-
west of the pathway and another observation (the sixth one) is to the
north-east of the pathway. Three observations (the fifth, seventh and
tenth) are support vectors on the pathway edges and the remaining five
observations are within the pathway.

It is the center solid line in Figure 5.4 that defines the way loans are
classified. Only one observation (the second one) is misclassified by the
SVM algorithm.

The results for different values of C are shown in Table 5.3. When C =
0.001, as we have just seen, one loan (10% of the total) is misclassified.
In this case, w1 = 0.0397, w2 = 0.0122, and b = 3.33. When C is decreased
to 0.0003 so that violations are less costly, two loans (20% of the total)
are misclassified. When it is decreased again to 0.0002, three loans
(30% of the total) are misclassified.

This baby example shows that SVM is a way of generating a number
of plausible boundaries for a data set. As with other machine learning
algorithms, it is necessary to use a training set, validation set and a test
set to determine the best model and its errors.

Figure 5.4 Optimal pathway for the data in Table 5.2 when C=0.001
(See Excel or Python file)

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

A
d

ju
st

e
d

 C
re

d
it

 S
co

re
 (

=
 F

IC
O

−
6

2
0

)

Income ('000s)

112 Chapter 5

Table 5.3 Results of applying SVM to the data in Table 5.2. See Python
results. Excel results are not as accurate.

C w1 w2 b Loans mis-
classified

Width of
pathway

0.01 0.054 0.022 5.05 10% 34.4
0.001 0.040 0.012 3.33 10% 48.2
0.0005 0.026 0.010 2.46 10% 70.6
0.0003 0.019 0.006 1.79 20% 102.2
0.0002 0.018 0.003 1.69 30% 106.6

5.3 Non-linear Separation

So far, we have assumed that the pathway separating observations

into two classes is a linear function of the feature values. We now inves-
tigate how this assumption can be relaxed.

Figure 5.5 provides an example of a situation where there are only
two features, 𝑥1 and 𝑥2. It appears that a non-linear boundary would
work better than a linear boundary. The general approach to finding a
non-linear boundary is to transform the features so that the linear
model presented so far in this chapter can be used.

Figure 5.5 Example of data where a non-linear separation would be
appropriate (Circles and stars represent observations in different clas-
ses.)

As a simple example of this approach, suppose that we introduce A,

the age (yrs.) of the borrower, as a feature for classifying loans. We sup-

x2

x1

SVM 113

pose that for A < 23 and A > 63, the impact of age is negative (so that it
is more likely that the loan will default) while for 23 ≤ A ≤ 63 the impact
of age is positive. A linear pathway will not handle the age variable well.

One idea is to replace A by a new variable:

𝑄 = (43 − 𝐴)2

If the dependence of creditworthiness on age is closer to quadratic than
linear the transformed variable Q will work better as a feature than the
original variable A.

We can extend this idea by creating several features that are powers
of the existing features. For example, for loan classification we could
create features that are the square of income, the cube of income, the
fourth power of income and so on.

Another way of transforming features to achieve linearity is by using
what is known as a Gaussian radial bias function (RBF). Suppose that
there are m features. We choose a number of landmarks in m-
dimensional space. These could (but do not need to) correspond to ob-
servations on the features. For each landmark, we define a new feature
that captures the distance of an observation from the landmark. Sup-
pose that the values of the features at a landmark are ℓ1, ℓ2,…, ℓm and
that the values of the features for an observation are x1, x2,…., xm. The
distance of the observation from the landmark is

𝐷 = √∑(𝑥𝑗 − ℓ𝑗)2

𝑚

𝑗=1

and the value of the new RBF feature that is created for the observation
is

exp (−γ𝐷2)

The parameter  determines how the value of the RBF feature for an
observation declines as its distance from the landmark increases. (As 
increases, the decline becomes more rapid.)

Using many landmarks or introducing powers of the features as new
features will usually lead to linear separation in a situation such as that

114 Chapter 5

in Figure 5.5. The downside is that the number of features increases,
and the model becomes more complex.2

5.4 Predicting a Continuous Variable

SVM can be used to predict the value of a continuous variable. It is

then referred to as SVM regression. Instead of trying to fit the largest
possible pathway between two classes while limiting violations, we try
to find a pathway with a pre-specified width that contains as many of
the observations as possible.

Consider a simple situation where a target, y, is being estimated from
only one feature, x. The value of the target is on the vertical axis and the
value of the feature is on the horizontal axis. The vertical half-width of
the pathway is specified by a hyperparameter, e. We assume that the
center of the path is

𝑦 = 𝑤𝑥 + 𝑏

The situation is illustrated in Figure 5.6. If an observation, i, lies

within the pathway, there is considered to be no error. If it lies outside
the pathway, the error, zi, is calculated as the vertical distance from the
edge of the pathway. We could choose the pathway to minimize

𝐶 ∑ 𝑧𝑖

𝑛

𝑖=1

+ 𝑤2

where C is a hyperparameter. The w2 term is a form of regularization. It
is not necessary when there is only one feature but becomes more rele-
vant as the number of features is increases.

When there are m features with values xj (1 ≤ j ≤ m), the pathway is
formed by two hyperplanes separated vertically by 2e.3 The equations
of the hyperplanes are

2 The complexity can be reduced by what is known as the kernel trick. See, for ex-
ample, J. H. Manton and P.-O. Amblard, “A primer on reproducing Hilbert spaces,”
https://arxiv.org/pdf/1408.0952v2.pdf
3 For example, when there are two features there is a three-dimensional relation-
ship between the target and the features and the pathway consists of two parallel
planes. When there are m (>2) features the relationship between the target and the
features is in m+1 dimensional space.

https://arxiv.org/pdf/1408.0952v2.pdf

SVM 115

𝑦 = ∑ 𝑤𝑗𝑥𝑗 + 𝑏 + 𝑒

𝑚

𝑗=1

and

𝑦 = ∑ 𝑤𝑗𝑥𝑗 + 𝑏 − 𝑒

𝑚

𝑗=1

The objective function to be minimized is

𝐶 ∑ 𝑧𝑖

𝑛

𝑖=1

+ ∑ 𝑤𝑗
2

𝑚

𝑗=1

Here the regularization aspect of the second term becomes clear. Its aim
is to prevent large positive and negative weights.4

Figure 5.6 Pathway for SVM regression

Consider the task of estimating the price of a house from Living Area
(square feet). We are searching for a pathway such as that shown in
Figure 5.6. Figure 5.7 shows the result for the training set when e =
50,000 and C = 0.01 while Figure 5.8 shows results for the training set

4 Its effect is similar to that of the extra term included in a Ridge regression (see
Chapter 3).

y=wx+b

y=wx+b+e

y=wx+b−e

e

e

y

x

116 Chapter 5

when e = 100,000 and C = 0.1. The line used for predicting house prices
is the solid line in the figures.

Figure 5.7 Results for training set when house prices are predicted
from living area with e = 50,000 and C = 0.01 (See SVM regression Excel
file for calculations)

Figure 5.8 Results for training set when house prices are predicted
from living area with e = 100,000 and C = 0.1 (See SVM regression Excel
file for calculations)

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

0 1,000 2,000 3,000 4,000

Living area (sq. ft.)

House
Price ($)

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

0 1,000 2,000 3,000 4,000

Living area (sq. ft.)

House
Price ($)

SVM 117

The two SVM regression lines have slightly different biases and
weights. In Figure 5.7 the b = 21,488 and w = 104.54, whereas in Figure
5.8 the b = 46,072 and w = 99.36. (This means that the slope of the re-
gression line in Figure 5.7 is slightly greater than in Figure 5.8.)

Which is the better model? As usual this must be determined out-of-
sample. Table 5.4 shows that the standard deviation of the prediction
errors for the validation set is slightly lower for the model in Figure 5.7.
In this case, plain vanilla linear regression has better prediction errors
than both models. This is not too surprising as the regularization inher-
ent in the SVM objective function does not improve the model when
there is only one feature. (But see Exercise 5.11 for an extension of the
example).

Table 5.4 Validation set results for the two SVM regression models
considered

 Standard deviation of
prediction error ($)

Model in Figure 5.7 58,413
Model in Figure 5.8 58,824
Linear regression 57,962

To summarize, the SVM approach is different from a simple linear
regression because

 The relationship between the target and the features is repre-

sented by a pathway rather than a single line.
 The prediction error is counted as zero when an observation lies

within the pathway.
 Errors for observations outside the pathway are calculated as the

difference between the target value and the closest point in the
pathway that is consistent with the feature values.

 There is some regularization built into the objective function as
explained above.

We can extend SVM regression to allow the pathway to be non-linear
by creating new features as functions of the original features in a simi-
lar way to that discussed in Section 5.3 for non-linear classification.

118 Chapter 5

Summary

SVM seeks to classify observations by deriving a pathway between

observations in the training set. The center of the pathway is the
boundary used to assign new observations to a class. In the simplest
situation, the pathway is linear function of the features and all observa-
tions are correctly classified. This is referred to as a hard margin classi-
fication. However, perfect separation is usually not possible and alter-
native boundaries can be developed by considering alternative trade-
offs between the width of the pathway and the extent of violations.

By working with functions of the feature values rather than the fea-
ture values themselves the pathway for separating the observations
into two classes can be made non-linear. We have discussed the possi-
bility of creating new features that are squares, cubes, fourth powers,
etc. of the feature values. Alternatively, landmarks can be created in the
feature space with new features that are functions of the distances of an
observation from the landmarks.

SVM regression uses the ideas underlying SVM classification to pre-
dict the value of a continuous variable. A pathway through the observa-
tions for predicting the target is created. If the value of the target for an
observation is inside the pathway there is assumed to be no prediction
error. If it is outside the pathway the prediction error is the difference
between the target value and what the target value would be if it were
just inside the pathway. The width of the pathway (measured in the di-
rection of the target value) is specified by the user. There is a trade-off
between the average pathway prediction error and the amount of regu-
larization.

SHORT CONCEPT QUESTIONS

5.1 What is the objective in SVM classification?
5.2 What is the difference between hard and soft margin classifica-

tion?
5.3 What are the equations for the upper and lower edges of the

pathway in linear classification with m features in terms of the
weights wj and the feature values xj?

5.4 What happens to the width of the path as the cost assigned to vio-
lations increases?

5.5 How is the extent of the violation measured in soft margin linear
classification?

SVM 119

5.6 How is the methodology for linear classification extended to non-
linear classification?

5.7 What is a landmark and what is a Gaussian radial bias function
(RBF)?

5.8 Explain the objective in SVM regression.
5.9 What are the main differences between SVM regression and sim-

ple linear regression?

EXERCISES

5.10 Produce a table similar to Table 5.3 for the situation where the
data in Table 5.1 is changed so that the third loan is good and the
eighth loan defaults.

5.11 Use Sklearn.svm.LinearSVR to extend the SVM regression analysis
in Section 5.4 for the Iowa house price example so that other fea-
tures are considered.

121

Chapter 6

Supervised Learning:
Neural Networks

Artificial Neural Networks (ANNs) are powerful machine learning
algorithms that have found many applications in business and else-
where. The algorithms learn the relationships between targets and fea-
tures using a network of functions. Any continuous non-linear relation-
ship can be approximated to arbitrary accuracy using an ANN.

In this chapter, we first explain what an ANN is. We then move on to
provide an application and explain extensions of the basic idea to what
are known as autoencoders, convolutional neural networks (CNNs) and
recurrent neural networks (RNNs).

6.1 Single Layer ANNs

Consider the problem we considered in Section 4.5 of predicting the

value of a house from just two features:

 Overall quality
 Living area (sq. ft.)

122 Chapter 6

A simple ANN for doing this is shown in Figure 6.1. It has three layers:
the input layer consisting of the two features, an output layer consisting
of the house value and a hidden layer consisting of three neurons. The
parameters and variables in Figure 6.1 are as follows:

 𝑤𝑗𝑘 is a model parameter. It is the weight linking the jth feature to

the kth neuron. As there are two features and three neurons,
there are a total of 6 of these weights in Figure 6.1. (Only two are
marked on the figure.)

 𝑢𝑘 is a model parameter. It is the weight linking the kth neuron to
the target.

 𝑉𝑘 is the value at neuron k. It is calculated by the model.

Figure 6.1 A simple single-hidden-layer ANN for predicting the value
of a house

Functions are specified relating the 𝑉𝑘 to the 𝑥𝑗 and the value of the

house, H, to the 𝑉𝑘. The key point is that the ANN does not relate H di-
rectly to the 𝑥𝑗 . Instead it relates H to the 𝑉𝑘 and the 𝑉𝑘 to the 𝑥𝑗 . The

functions that define these relationships are referred to as activation
functions. A popular activation function is the sigmoid function which
was introduced in Chapter 3 in connection with logistic regression (see
Figure 3.10).1 This is the function

𝑓(𝑦) =
1

1 + 𝑒−𝑦

1 Examples of other popular activation functions are:

(a) the hyperbolic tangent function tanh(𝑦) = (𝑒2𝑦 − 1) (𝑒2𝑦 + 1)⁄ which
gives values between −1 and +1; and

the Relu function max(y, 0).

Living area, x2

House Value, H

Features Neurons Target

V1

Overall quality, x1

V2

V3

w11

w12

u1

u2

u3

Neural Networks 123

For all values of the argument y, the function lies between zero and one.
We set

𝑉𝑘 = 𝑓(𝑎𝑘 + 𝑤1𝑘𝑥1 + 𝑤2𝑘𝑥2)

where the a’s are biases and the w’s are weights. This means that

𝑉1 =
1

1 + exp (−𝑎1 − 𝑤11𝑥1 − 𝑤21𝑥2)

𝑉2 =
1

1 + exp (−𝑎2 − 𝑤12𝑥1 − 𝑤22𝑥2)

𝑉3 =
1

1 + exp (−𝑎3 − 𝑤13𝑥1 − 𝑤23𝑥2)

To relate a numerical target such as H to the 𝑉𝑘, we typically use a

linear activation function so that

𝐻 = 𝑐 + 𝑢1𝑉1 + 𝑢2𝑉2 + 𝑢3𝑉3

 where c is a bias and the u’s are weights.
The model in Figure 6.1 has six weights 𝑤𝑗𝑘 , three biases 𝑎𝑘 , three

weights 𝑢𝑘, and one additional bias c for a total of 13 parameters. The
objective is to choose the parameters so that the predictions given by
the network are as close as possible to the target values for the training
set. Typically, this is done by minimizing an objective function such as
mean squared error (mse) or mean absolute error (mae) across all ob-
servations. This objective function is referred to as a cost function.2

For another simple example of an ANN consider the problem in
Chapter 3 of classifying loans into “good” and “default” categories using
four features:

 Credit score
 Income ($’000s)
 Debt to income ratio
 Home ownership (1 = owns; 0 = rents)

2 The cost function terminology is used throughout machine learning when a nu-
merical value is being predicted. For example, the mse in a linear regression is re-
ferred to as a cost function.

124 Chapter 6

An ANN with one hidden layer is shown in Figure 6.2. This works in
the same way as the one in Figure 6.1 except that we do not use a linear
activation function to relate the target to the 𝑉𝑘. We require the target
to be between zero and one because it is a probability and so it is natu-
ral to use another sigmoid function to calculate it from the Vk. The
probability of a good loan is given by

𝑄 =
1

1 + exp (−𝑐 − 𝑢1𝑉1 − 𝑢2𝑉2 − 𝑢3𝑉3)

In Figure 6.2, the number of parameters is 19.

The objective function for a neural network, such as that in Figure
6.2 where a probability is being predicted, can be the one based on max-
imum likelihood that we introduced in connection with logistic regres-
sion in equation (3.8).

Figure 6.2 A simple single-hidden-layer ANN for classifying loans

The ANNs in Figures 6.1 and 6.2 have a single hidden layer with
three neurons. In practice, single-hidden-layer ANNs usually have
many more than three neurons. There is a result known as the universal
approximation theorem which states that any continuous function can
be approximated to arbitrary accuracy with an ANN that has a single
hidden layer.3 However, this may require a very large number of neu-
rons and it can be more computationally efficient to use multiple hidden
layers.

3 See K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural Networks, 1991, 4, 251−257.

debt to income, x3

Probability of
good loan, Q

Features Neurons Target

V1

credit score, x1

income, x2

owns/rents, x4

V2

V3

w11

w12 u1

u2

u3

Neural Networks 125

6.2 Multi-layer ANNs

Figure 6.3 shows the general configuration of a multi-layer ANN. In

each of Figure 6.1 and 6.2 there is one set of intermediary variables (i.e.,
one hidden layer) between the features and the target. In Figure 6.3,
there are a total of L hidden layers and therefore L + 1 sets of biases and
weights. We have labeled the feature values, 𝑥𝑗 (1 ≤ j ≤ m) similarly to

before. We assume K neurons per layer. The values at the neurons com-
prising the lth layer are labeled 𝑉𝑙𝑘 (1 ≤ k ≤ K; 1 ≤ l ≤ L).

 As indicated in Figure 6.3 there can be multiple targets in the output
layer. The objective function can then be set equal to the sum of the
(possibly weighted) objective functions that would be used for each
target. (For targets that are probabilities, the maximum likelihood ob-
jective function in equation (3.8) can have its sign changed so that it is
an expression to be minimized rather than maximized.)

Figure 6.3 A multi-layer neural network

There are weights associated with each of the lines in Figure 6.3. Ac-
tivation functions are used to:

1. Relate values at the neurons of the first hidden layer to the fea-
ture values, i.e., to relate the 𝑉1𝑘 to the 𝑥𝑗

2. Relate the values at neurons in hidden layer l+1 to the values at
neurons in hidden layer l (1 ≤ l ≤ L−1)

v 1,1

v 1,2

v 1,3

v 1,5

v 1,4

x1

x2

x3

v 2,1

v 2,2

v 2,3

v 2,5

v 2,4

v 3,1

v 3,2

v 3,3

v 3,5

v 3,4

v L,1

v L,2

v L,3

v
L,5

v L,4

y1

y 2

y3

TargetsFeatures Multiple layers of neurons

……

……

……

…
… …
…

…
…

…
…

…
…

…
…

126 Chapter 6

3. Relate the target values to the values in the final hidden layer (i.e.,
to relate the y’s to the 𝑉𝐿𝑘)

The sigmoid function, used in the way described in the previous sec-
tion, is a popular choice for the activation function for 1 and 2. In the
case of 3, as explained in the previous section, linear activation func-
tions are usually used for numerical targets while the sigmoid function
can be used for classification.

The number of hidden layers and number of neurons per hidden
layer necessary to solve a particular problem is usually found by trial
and error. Typically, layers and neurons are increased until it is found
that further increases produce little increase in accuracy.

A neural network can easily give rise to a very large number of mod-
el parameters. If there are F features, H hidden layers, M neurons in each

hidden layer, and T targets there are

(1) (1)(1) (1)F M M M H M T     

parameters in total. For example, in a four-feature model with three
hidden layers, 80 neurons per layer and one target there are 13,441
parameters. This naturally leads to over-fitting concerns, as we discuss
later.

6.3 Gradient Descent Algorithm

When neural networks are used, the minimization of the objective

function is accomplished using the gradient descent algorithm. We
briefly outlined how this works in Chapter 3. First, an initial set of pa-
rameter values is chosen. An iterative procedure is then carried out to
gradually improve the objective function by changing these parameters.

To illustrate the gradient descent algorithm, we take a simple exam-
ple. Consider again the data introduced in Table 1.1 of Chapter 1 for sal-
ary as a function of age. This is reproduced in Table 6.1. We assume a
very simple (and not particularly good) linear model

𝑦 = 𝑏𝑥 + 𝜀

where y is salary, x is age, and 𝜀 is the error. There is only one parame-
ter b. The mean squared error, E, is given by

Neural Networks 127

𝐸 =
1

10
∑(𝑦𝑖 − 𝑏𝑥𝑖)2 (6.1)

10

𝑖=1

where 𝑥𝑖 and 𝑦𝑖 are age and salary for the ith observation.

Table 6.1 Salaries for a random sample of ten people working in a par-
ticular profession in a certain area

Age (years) Salary ($’000)

25 135
55 260
27 105
35 220
60 240
65 265
45 270
40 300
50 265
30 105

The value of the parameter b that minimizes E can of course be cal-

culated analytically, as we explained in Chapter 3. Here we show how
the gradient descent algorithm can be used. Figure 6.4 shows the mean
squared error, E, as a function of b. The aim of the algorithm is to find
the value of b at the bottom of the valley in Figure 6.4.

We might arbitrarily set b = 1 initially. Using calculus, it can be
shown that the gradient of E with respect to b is4

−
1

5
∑ 𝑥𝑖(𝑦𝑖 − 𝑏𝑥𝑖) (6.2)

10

𝑖=1

Substituting b = 1 and using the values of 𝑥𝑖 and 𝑦𝑖 in Table 6.1, this
formula gives −15,986.2. This means that when b increases by a small
amount e, E increases by −15,986.2 times e.

4 Without knowing any calculus, we could calculate this gradient by

 substituting b = 1.01 into equation (6.1) to get 𝐸+,
 substituting b = 0.99 into equation (6.1) to get 𝐸−
 calculating the gradient as (𝐸+ − 𝐸−) (2 × 0.01)⁄

128 Chapter 6

Figure 6.4 Mean squared error as a function of the value of the pa-
rameter b

Once we have calculated the gradient at b = 1, we take a step down
the valley. The size of the step is referred to as the learning rate. The
new value of b is calculated from the old value of b as

𝑏new = 𝑏old − learning rate × gradient (6.3)

In our example, we choose a learning rate equal to 0.0002 so that we

change b = 1 to

𝑏 = 1 − 0.0002 × (−15,986.2) = 4.1972

We then calculate the gradient from equation (6.2) when b = 4.1972.
This turns out to be −2,906.9. Using equation (6.3) we calculate a new
value of b on the second iteration to be

𝑏 = 4.1972 − 0.0002 × (−2906.9) = 4.7786

We continue in this way, improving the value of b at each step. As in-

dicated in Table 6.2, the value of b quickly converges to 4.9078 which
(as a simple linear regression verifies) is the value that minimizes E.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 2 4 6 8 10

b

Mean Squared
Error, E

Neural Networks 129

Table 6.2 Value of b in successive iterations when learning rate is
0.0002

Iteration Value of b Gradient Change in b

0 1.0000 −15,986.20 +3.1972
1 4.1972 −2,906.93 +0.5814
2 4.7786 −528.60 +0.1057
3 4.8843 −96.12 +0.0192
4 4.9036 −17.48 +0.0035
5 4.9071 −3.18 +0.0006
6 4.9077 −0.58 +0.0001
7 4.9078 −0.11 +0.0000
8 4.9078 −0.02 +0.0000
9 4.9078 0.00 +0.0000

In Table 6.2, we chose a learning rate of 0.0002 which proves to

work well. A learning rate that is too low will lead to very slow conver-
gence. A learning rate that is too high will lead to no convergence at all.
Tables 6.3 and 6.4 illustrate this by showing what happens when learn-
ing rates of 0.00001 and 0.0005 are used. As we explain later, methods
for optimizing learning rates have been developed.

Table 6.3 Value of b in successive iterations when learning rate is
0.00001

Iteration Value of b Gradient Change in b

0 1.0000 −15,986.20 +0.1599
1 1.1599 −15,332.24 +0.1533
2 1.3132 −14,705.03 +0.1471
3 1.4602 −14,103.47 +0.1410
4 1.6013 −13,526.53 +0.1353
5 1.7365 −12,973.18 +0.1297
6 1.8663 −12,442.48 +0.1244
7 1.9907 −11,933.48 +0.1193
8 2.1100 −11,445.31 +0.1145
9 2.2245 −10,977.10 +0.1098

130 Chapter 6

Table 6.4 Value of b in successive iterations when learning rate is
0.0005

Iteration Value of b Gradient Change in b

0 1.0000 −15,986.20 +7.9931
1 8.9931 16,711.97 −8.3560
2 0.6371 −17,470.70 +8.7353
3 9.3725 18,263.87 −9.1319
4 0.2405 −19,093.05 +9.5465
5 9.7871 19,959.87 −9.9799
6 −0.1929 −20,866.05 +10.4330
7 10.2401 21,813.37 −10.9067
8 −0.6665 −22,803.69 +11.4018
9 10.7353 23,838.98 −11.9195

Multiple Parameters
When many parameters have to be estimated, all the parameter val-

ues change on each iteration. For the gradient descent algorithm to
work efficiently, the feature values should be scaled as described in Sec-
tion 2.1. The change in the value of a parameter, , equals

−Learning rate × gradient

as before. In this case, the gradient used is the rate of change of the val-
ue the objective function with respect to . To use the language of calcu-
lus, the gradient is the partial derivative of E with respect to .

Suppose that there are two parameters and at a particular point in
the gradient descent algorithm, the gradient in the direction of one pa-
rameter is ten times the gradient in the direction of the other parame-
ter. If the same learning rate is used for both parameters, the change
made to the first parameter will be ten times as great as that made to
the second parameter.

When there are a large number of parameters, determining the gra-
dient applicable to each one is liable to be prohibitively time consuming.
Luckily a shortcut has been developed.5 This is known as backpropaga-
tion and involves working back from the end of the network to the be-

5 See D. Rumelhart, G. Hinton, and R. Williams, “Learning internal representations
by error propagation,” Nature, 1986, 323, 533−536.

Neural Networks 131

ginning calculating the required partial derivatives. A technical note
explaining this is on the author’s website:

www-2.rotman.utoronto.ca/~hull
It is also worth noting that the partial derivatives of the target with re-
spect to each of the features can be calculated from the neural network
by working forward through the network.6

6.4 Variations on the Basic Method

As already indicated, neural networks learn much faster when the

features being input are scaled (see Section 2.1). Also, some regulariza-
tion is usually desirable. Similarly to linear regression, L1 regulariza-
tion involves adding a constant times the sum of the absolute values of
all the weights to the target; L2 regularization involves adding a con-
stant times the sum of the squares of all weights to the target. Analo-
gously to linear regression (see Chapter 3), L1 regularization zeroes out
some weights whereas L2 regularization reduces the average magni-
tude of the weights.

The gradient descent algorithm can lead to a local minimum. Con-
sider for example the situation in Figure 6.5. If we start at point A, we
could reach the local minimum at point B when the better (global) min-
imum is at point C. To speed up the learning process and attempt to
avoid local minima several variations on the basic gradient descent al-
gorithm have been developed. For example,

 Mini-batch stochastic gradient descent. This randomly splits the

training data set into small subsets known as mini-batches. In-
stead of using the whole training data to calculate gradients, it
updates model parameters based on the gradients calculated
from a single mini-batch with each of the mini-batches being used
in turn. Because the algorithm estimates the gradient using a
small sample of the training data, it is faster. An epoch is a set of
iterations that make one use of the whole training set.

 Gradient descent with momentum. This calculates a gradient as an
exponentially decaying moving average of past gradients. This

6 This assumes that the activation functions are differentiable everywhere. The sig-
moid and hyperbolic tangent function do have this property. The relu function does
not. Both backpropagation and the calculation of partial derivative involve an appli-
cation of the chain rule for differentiation.

132 Chapter 6

approach helps to speed up learning in any direction that has a
consistent gradient.

 Gradient descent with adaptive learning rates. As Tables 6.2, 6.3,
and 6.4 illustrate it is important to choose a good learning rate. A
learning rate that is too small will result in many epochs being
required to reach a reasonable result. A learning rate that is too
high may lead to oscillations and a poor result. Different model
parameters may benefit from different learning rates at different
stages of training. A popular adaptive learning rate algorithm is
Adam which stands for Adaptive moment estimation. It uses both
momentum and an exponentially decaying average of past
squared gradients.

 Learning rate decay. In addition, using adaptive learning rates it
generally makes sense to reduce the learning rate as the algo-
rithm progresses. This is known as learning rate decay. (The
shape of the curve in Figure 6.4 indicates that it would work well
for that example.) To avoid local minima periodic increases in the
learning rate are sometimes made.

 Gradient descent with dropouts. Training can be faster if some
nodes, chosen at random from each hidden layer, are removed
from the network on each iteration. The number of iterations
necessary for convergence is increased but this is more than off-
set by a reduction in the run time for each iteration

.
Figure 6.5 Situation where there is a local minimum at B

mse

Parameter Value

A

B
C

Neural Networks 133

6.5 The Stopping Rule

It might be thought that the algorithm should continue until the val-

ues of the parameters can be improved no more, i.e., until we have
reached the bottom of the valley that defines the objective function, E, in
terms of the parameters. In the simple example we considered earlier,
the algorithm does this. Indeed, the optimal value of b was found in Ta-
ble 6.2 (to four places of decimals) after only seven iterations.

In practice, as we have pointed out, there can be tens of thousands of
parameters in a neural network. Continuing to change the parameters
until the error, E, is minimized for the training set, even if that were
possible, would result in a very complex model and over-fitting. As we
pointed out in Chapter 1, a good practice is to continue fitting the ma-
chine learning model to the data, making it more complex, until the re-
sults for the validation set start to get worse.

When implementing a neural network, we therefore calculate the
cost function for the both the training set and the validation set after
each epoch of training. The usual practice is to stop training when the
cost function for the validation set starts to increase. We then choose to
use the model that gives the lowest cost function for the validation set.
As training progresses, neural network software must therefore calcu-
late the cost function for the validation set after each epoch and re-
member all the weights and biases associated with the model that gives
the lowest cost function.

6.6 The Black−Scholes−Merton Formula

The Black−Scholes–Merton (or Black−Scholes) formula is one of the

most famous results in finance. It gives the value of a call option on an
asset as

𝑆𝑒−𝑞𝑇𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) (6.4)

where

𝑑1 =
ln(𝑆 𝐾⁄) + (𝑟 − 𝑞 + σ2 2⁄)𝑇

𝜎√𝑇

𝑑2 =
ln(𝑆 𝐾⁄) + (𝑟 − 𝑞 − 𝜎2 2⁄)𝑇

𝜎√𝑇

134 Chapter 6

The inputs to this formula are as follows. S is the stock price, K is the
strike price, r is the risk-free rate, q is the dividend yield (i.e., income as
a percent of the price of the stock),  is the stock price volatility, and T
is the option’s time to maturity.

We will use the formula to provide an application of neural net-
works.7 (See www-2.rotman.utoronto.ca/~hull) Note that it is not nec-
essary to understand how call options work in order appreciate this
application of neural networks. However, interested readers will find
that Chapter 10 provides a discussion of this as well as some further
applications of machine learning to derivative markets.

We assume q = 0 and create a data set of 10,000 observations by
randomly sampling from uniform distributions for the other five inputs
to the Black−Scholes−Merton formula.8 The lower and upper bounds of
the uniform distributions are as indicated in Table 6.5. For each set of
parameters sampled, we calculate the Black−Scholes−Merton price us-
ing equation (6.4). To make the illustration more interesting, we then
add a random error to each observation. The random error is normally
distributed with a mean of zero and standard deviation of 0.15. The ob-
servations were split as follows: 60,000 to the training set, 20,000 to the
validation set, and 20,000 to the test set. Z-score scaling, based on the
mean and standard deviation of the observations in the training set,
was used for all the features.

Table 6.5 Upper and lower bounds used for Black-Scholes parameters
to create the data set

 Lower bound Upper bound
Stock price, S 40 60
Strike price, K 0.5S 1.5S
Risk free rate, r 0 5%
Volatility,  10% 40%
Time to maturity, T 3 months 2 years

7 Black−Scholes−Merton model was used to illustrate neural networks many years
ago by J. M. Hutchinson, A. W. Lo, and T. Poggio, “A Nonparametric Approach to Pric-
ing and Hedging Derivative Securities Via Learning Networks,” Journal of Finance,
(July 1994), 49(3): 851−889. A more recent similar implementation is R. Culkin and
S. R. Das, “Machine Learning in Finance: The Case of Deep Learning for Option Pric-
ing,” Journal of Investment Management (2017) 15 (4): 92–100.
8 The q = 0 assumption means that we are using the formula corresponding to the
original Black−Scholes result.

Neural Networks 135

We use mean absolute error (mae) as the cost function. The neural
network has three hidden layers and 20 neurons per layer for a total of
about 1,000 parameters. Similarly to Figure 6.1, the sigmoid function is
used as the activation function, except for the calculation of the option
price from the values in the final hidden layer where a linear activation
function is used. Learning rates are determined using Adam.

Figure 6.6 shows the mean absolute error for the training set and the
validation set as the number of epochs is increased. The results for the
validation are more noisy than those for the training set, but it is clear
that, whereas the training set results continue to improve, the valida-
tion set results start deteriorating after a few thousand epochs. Figure
6.7 shows the same results with the errors shown for each epoch being
the average error over the subsequent 50 epochs. This moving-average
calculation eliminates most of the noise and shows more clearly that the
validation set average errors are similar to the training set errors for
the first few thousand epochs and then start to worsen.

Figure 6.6 Training set and validation set mean absolute errors as a
the number of epochs of training is increased

As mentioned earlier, once an increase in the cost function for the
validation set is observed, normal practice is to go back to the model
that gave the best result for the validation set. In this case, the best re-
sult for the validation set was after 2,575 epochs of training.

136 Chapter 6

Figure 6.7 Mean absolute errors averaged over 50 epochs

How well has the model fitted the data? The mean absolute error for

the test set is 0.122. This is about what one would expect. The mean
absolute value of a normally distributed variable with a mean of zero
and a standard deviation of 0.15 is

√
2

𝜋
× 0.15 = 0.120

It is interesting to compare three values:

1. The true Black−Scholes−Merton price of an option
2. The price of the option after noise is added
3. The predicted price given by the neural network

The averages of the three prices are very close to each other. The stand-
ard deviation of the difference between 1 and 2 and between 2 and 3
was almost exactly 0.15 (which is as expected because the standard de-
viation of the noise added to the Black−Scholes−Merton price was 0.15).
The standard deviation of the difference between 1 and 3 was about
0.04. This indicates that the neural network model gets rid of the noise
reasonably well. If the size of the data set were increased, we would ex-
pect 1 and 3 to become closer.

Neural Networks 137

6.7 Extensions

The example in the previous section might seem a little artificial. The

Black-Scholes price can be calculated quickly and accurately, and so
there is little point in using a neural network to estimate it! However,
this is not true for the prices of all derivatives that are traded. Some
must be valued using Monte Carlo simulation or other numerical proce-
dures that are computationally slow. This creates problems because
analysts, for a number of reasons, have to carry out scenario analyses,
involving Monte Carlo simulations, to explore how the values of portfo-
lios of derivatives can change through time. If the procedure for calcu-
lating the prices of some of the instruments in the portfolio involves
Monte Carlo simulation or another slow numerical procedure, the sce-
nario analyses can be impossibly slow.

To solve this problem, it is useful for analysts to replace slow numer-
ical pricing procedures with neural networks.9 Once the neural network
has been constructed the valuation is very fast. All that is involved is
working forward through the neural network, starting with the inputs,
to get the target price. This can be several orders of magnitude faster
than a slow numerical procedure.

The first stage is to create a large data set relating the derivative’s
value to inputs such as the price of the underlying asset, interest rates,
volatilities, and so on (as we did in the example in the previous section).
This is done using the standard (slow) numerical procedure and can
take a long time. But it only has to be done once. The data set is then
divided into a training set, a validation set, and a test set in the usual
way. A neural network is trained on the training set. The validation set
is used to determine when training should stop (as in our Black−Scholes
example) and the test set is used to quantify the model’s accuracy.

An interesting aspect of this type of application of neural networks is
that the analyst does not have to collect and clean a large amount of da-
ta. The analyst generates the data needed from a model. It is possible to
replicate the relationship between the output and input with very little
error. One important point is that the model is only reliable for the
range of values of the data in the training set. It is liable to give very
poor answers if extrapolated to other data.10

9 See R. Ferguson and A. Green, “Deeply Learning Derivatives,” October 2018, ssrn
3244821.
10 However, there have been some attempts to overcome this problem. See A. An-
tonov, M. Konikov, and V. Piterbarg, “Neural Networks with Asymptotic Controls,”
ssrn 3544698.

138 Chapter 6

6.8 Autoencoders

An autoencoder is a neural network designed to reduce the dimen-

sionality of data. Its objective is similar to that of principal components
analysis (PCA), which we discussed in Section 2.7. It is designed to ex-
plain most of the variation in a data set that has m features with a new
set of less than m manufactured features.

In an autoencoder’s neural network, the output is the same as the
input. The simplest type of autoencoder has one hidden layer and line-
ar activation functions. The number of neurons in the hidden layer is
less than the number of features. The first part of the network where
values at the neurons are determined from the inputs is known as en-
coding. The second part of the network where the output is determined
from the values at neurons is known as decoding. The neural network
tries to minimize the total mean squared error (or other cost function)
between the predicted output values and the actual output/input val-
ues. If the mean squared error is small, the weights used to calculate the
predicted output from the hidden layer provide manufactured features
that are smaller in number than the original features but contain similar
information.

In Section 2.7 we showed how PCA can be used to create a small
number of features describing interest rate changes. Figure 6.8 shows
the design of an autoencoder to do the same thing. The aim is to deter-
mine two features that capture most of the variation in eight interest
rates.

Define 𝑟𝑖𝑗 as the jth rate for the ith observation, and 𝑟̂𝑖𝑗 as the predic-

tion of the jth rate made by the neural network for this observation.
With the notation indicated on Figure 6.811

𝑉𝑖1 = ∑ 𝑟𝑖𝑗𝑤𝑗1

8

𝑗=1

𝑉𝑖2 = ∑ 𝑟𝑖𝑗𝑤𝑗2

8

𝑗=1

where 𝑉𝑖1 and 𝑉𝑖2 are the values of 𝑉1 and 𝑉2 for the ith observation. Al-
so

11 To keep the example simple, we assume zero bias throughout the network. This
has been suggested by R. Memisevic, K. Konda, and D. Krueger, “Zero-bias Autoen-
coders and the Benefits of Co-adapting Features” arXiv:1402.3337.

https://arxiv.org/abs/1402.3337

Neural Networks 139

𝑟̂𝑖𝑗 = 𝑉𝑖1𝑢1𝑗+𝑉𝑖2𝑢2𝑗

The objective is the minimize

∑(𝑟𝑖𝑗 − 𝑟̂𝑖𝑗)
2

𝑖,𝑗

Figure 6.8 Design of autoencoder to find two features describing in-
terest rate changes

The first manufactured feature involves the jth rate moving by 𝑢1𝑗

and the second one involves it moving by 𝑢2𝑗 . There are many different

possible sets of values for the w’s and the u’s that are equally good and
give the same predictions. Results from one implementation using Excel
and Solver (see www-2.rotman.utoronto.ca/~hull) are in Table 6.6.

A comparison with Table 2.9 shows that the two manufactured fea-
tures are quite different from PC1 and PC2. However, they are equiva-

1 yr. rate

2 yr. rate

3 yr. rate

4 yr. rate

5 yr. rate

7 yr. rate

10 yr. rate

30 yr. rate

1 yr. rate

2 yr. rate

3 yr. rate

4 yr. rate

5 yr. rate

7 yr. rate

10 yr. rate

30 yr. rate

V1

V2

w11w12 u11 u21

140 Chapter 6

lent. If we transform the features in Table 6.6 so that the first manufac-
tured feature involves a movement in the jth rate of

0.518𝑢1𝑗 + 0.805𝑢2𝑗

and the second manufactured feature involves a movement in the jth
rate of

2.234𝑢1𝑗 − 2.247𝑢2𝑗

we do get PC1 and PC2.

Table 6.6 One possible output from the autoencoder in Figure 6.8

 First manufactured
feature (the 𝑢1𝑗)

First manufactured
feature (the 𝑢2𝑗)

1 yr. rate 0.0277 0.2505
2 yr. rate 0.1347 0.3248
3 yr. rate 0.2100 0.3276
4 yr. rate 0.2675 0.3147
5 yr. rate 0.3118 0.3017
7 yr. rate 0.3515 0.2633
10 yr. rate 0.3858 0.2186
30 yr rate 0.3820 0.1331

The advantage of PCA is that the features produced are uncorrelated

and their relative importance is clear from the output. The advantage of
autoencoders is that they can be used with non-linear activation func-
tions. To use the PCA terminology, they allow data to be explained with
non-linear factors. Autoencoders have been found to be useful in image
recognition and language translation.

6.9 Convolutional Neural Networks

In the ANNs we have presented so far, a neuron in one layer is con-

nected to every neuron in the previous layer. For very large networks
this is infeasible. A convolutional neural network (CNN) solves this
problem by connecting the neurons in one layer to only a subset of the
neurons in the previous layer.

Neural Networks 141

CNNs are used in image recognition, voice recognition, and natural
language processing. Consider the task of processing an image through
a neural network for the purposes of facial recognition. The image is
divided into many small rectangles by drawing horizontal and vertical
lines. The small rectangles are referred to as pixels. Each pixel has a cer-
tain colour and a number is associated with that colour. Even the sim-
plest image is liable to have 10,000 pixels (formed from 100 horizontal
and 100 vertical lines). This creates a large number of inputs to a neural
network.

In Figure 6.3, the layers are columns of numbers. When a CNN is
used to process images, the inputs are a rectangular array of numbered
pixels. Subsequent layers are a rectangular grid of numbers. Figure 6.9
shows how the values at grid points in the first layer depend on the val-
ues at the pixels in the input layer. The rectangle in layer one denotes a
single grid point (or neuron) and the bolded rectangle in the input layer
shows what is termed the receptive field. It is all the pixels to which the
grid point is related. The values at grid points in subsequent layers de-
pend on the values at grid points in the previous layer in a similar
way.12

Figure 6.9 Relationship of value at grid point in layer one to values at
grid point in the input layer in a CNN

12 There may be “padding” where extra observations are added at the edges to avoid
successive layers becoming smaller.

Layer 1

Input layer

142 Chapter 6

The two-dimensional set of points in layer one in Figure 6.9 is re-
ferred to as a feature map. A complication is that each layer comprises
several feature maps so that it must be represented in three dimen-
sions. However, within a feature map, all neurons share the same set of
weights and biases. As a neuron within a feature map and its associated
receptive field are changed, the biases and weights stay the same. This
reduces the number of parameters. It also has the advantage that the
identification of an object in image recognition does not depend on the
part of the input layer where it appears.

Consider a black and white image that is 100×100 so that there are
10,000 pixels. A regular neural network would lead about 10,0002 or
100 million parameters to define the neurons in Layer 1. In a CNN
where the receptive field is 10×10 and there are six feature maps, this is
reduced to 6 × 101 or 606 parameters.

6.10 Recurrent Neural Networks

In a plain vanilla ANN each observation is considered separately

from every other observation. In a recurrent neural network (RNN) we
preserve the temporal sequence in which observations occur because
we want to allow for changes in our prediction model through time.
This can be particularly important in business where relationships be-
tween variables tend to change through time.

In a plain vanilla ANN, as we have explained, the value at a neuron in
layer l is calculated by applying an activation function to a linear com-
bination of the values at the neurons of layer l−1. When this is done for
one observation, we proceed to do the same thing for the next observa-
tion. But the algorithm has no memory. When doing calculations for an
observation at time t, it does not remember anything about the calcula-
tions it did for an observation at time t−1.

In an RNN, the activation function at time t is applied to a total of:
 a linear combination of the values at the neurons of layer l−1 at

time t; and
 a linear combination of the values at the neurons of layer l for

the observation at the previous time t−1.
This gives the network memory. The values in the network at time t de-
pend on the values at time t−1 which in turn depend on the values at
time t−2, and so on.

One issue with this is that the values from several time periods earli-
er are liable to have very little effect because they get multiplied by rel-

Neural Networks 143

atively small numbers several times. A Long Short-Term Memory
(LSTM) approach has been developed to overcome this problem.13 Data
from the past has the potential to flow straight through to the current
network. The algorithm decides which data should be used and which
should be forgotten.

Summary

An artificial neural network is a way of fitting a non-linear model to

data. Outputs are not related directly to inputs. There are a number of
intervening hidden layers which contain neurons. The values at the
neurons in the first hidden layer are related to the inputs; the values at
the neurons in the second hidden layer are related to the values at the
neurons in the first hidden layer; and so on. The outputs are calculated
from values at the neurons in the final hidden layer.

The functions defining the relationships are referred to as activation
functions. The sigmoid function, which was introduced in connection
with logistic regression, is often used as an activation function to relate
(a) the values at neurons in the first hidden layer to the input values
and (b) values at neurons in hidden layer l to values at neurons in hid-
den layer l−1. When numerical values are being estimated the activation
function relating the output to the neurons in the final hidden layer is
usually linear. When data is being classified, a sigmoid function is more
appropriate for this last step.

The gradient descent algorithm is used to minimize the objective
function in a neural network. Calculating the minimum can be thought
of as finding the bottom of a valley. The algorithm takes steps down the
valley where at each stage it follows the line of steepest descent. Choos-
ing the correct size for the step, which is referred to as the learning rate,
is an important aspect of the gradient descent algorithm. A number of
procedures for improving the efficiency of gradient descent algorithms
have been mentioned.

It is not unusual for neural networks to involve tens of thousands of
parameters. Even if it were possible to find the values of the parameters
that totally minimize the objective function for the training set, this
would not be desirable as it would almost certainly result in over-
fitting. In practice, a stopping rule is applied so that training using the

13 See S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Compu-
tation, 9(8): 1735−1780.

144 Chapter 6

gradient descent algorithm is halted when the results for the validation
set depart from those for the training set.

An autoencoder is a neural network where the output is the same as
the input. It is designed to replace the input features with a smaller
number of almost equivalent features. A convolutional neural network
is a neural network where the neurons in one layer are related to a sub-
set of the neurons in the previous layer rather than all of them. It is par-
ticularly useful for image recognition where the inputs are defined by
the colors of tens of thousands (or even millions) of pixels. A recurrent
neural network is a version of an ANN that is particularly suitable for
situations where the model for forecasting the output is expected to
evolve through time.

SHORT CONCEPT QUESTIONS

6.1 Explain what is meant by (a) a hidden layer and (b) a neuron, and
(c) an activation function.

6.2 Explain how a sigmoid function relates the values at the neurons
in one layer to the values at neurons in the previous layer.

6.3 What is the universal approximation theorem?
6.4 What activation function is suggested in the chapter for relating

the target to the values in the final layer when the objective is (a)
to predict a numerical variable and (b) to classify data?

6.5 What is meant by the learning rate in a gradient descent algo-
rithm?

6.6 What problems arise if the learning rate is too high or too low?
6.7 Explain how a stopping rule is chosen when an ANN is trained.
6.8 Explain how ANNs can be used in derivatives valuation.
6.9 Explain the key difference between a CNN and a plain vanilla

ANN.
6.10 Explain the key difference between an RNN and a plain vanilla

ANN.

EXERCISES

6.11 How many parameters are there when an ANN has five features,

two hidden layers and ten neurons per hidden layer, and one tar-
get?

Neural Networks 145

6.12 Produce tables similar to Table 6.2 for the validation set in Table
1.2 of Chapter 1. Assume the simple y = bx model. Experiment
with different starting points and learning rates.

6.13 In the model in Figure 6.1 assume that we start the gradient de-
scent algorithm by setting all the 𝑤𝑗𝑘 weights equal to 0, all the uk

weights equal to 100, and the biases equal to 0. What does the ini-
tial network give for the price of a house with overall quality
equal to 8 and living area equal to 3000 square feet?

6.14 Use the Python code on www-2.rotman.utoronto.ca/~hull to ex-
plore how well the Black–Scholes–Merton application in Section
6.6 works as the number of observations, the number of hidden
layers, and the number of neurons per layer are changed.

6.15 Use neural networks for the Iowa house price data. Try different
numbers of hidden layers and neurons per layer. Compare the re-
sults with those from linear regression.

6.16 Use neural networks for the Lending Club data. Try different
numbers of hidden layers and neurons per layer. Compare the re-
sults with those from logistic regression.

147

Chapter 7

Reinforcement Learning

So far, we have considered situations where one decision is taken in
isolation from other decisions. For example, the classification of a par-
ticular loan as “accept” or “reject” in earlier chapters was assumed to be
independent of other decisions made about other loans. The models we
developed implicitly assumed that, whether we accept or reject a loan
today, does not in any way affect whether we will accept or reject a loan
that comes across our desk tomorrow.

Some situations by their nature involve a series of decisions rather
than a single one. Furthermore, as the decisions are taken, the envi-
ronment may be changing. It is then necessary to determine the best
action bearing in mind that further decisions have to be taken later.

Reinforcement learning is the branch of machine learning that deals
with this type of sequential decision making.1 The algorithm receives
rewards when outcomes are good and incurs costs (negative rewards)
when they are bad. The objective of the algorithm is to maximize ex-
pected future rewards possibly with discounting.

1 A comprehensive treatment of reinforcement learning is provided by R.S. Sutton
and A.G. Barto, Reinforcement Learning: An Introduction, 2nd edition, 2018, The MIT
Press.

148 Chapter 7

In this chapter we start with a simple sequential decision-making
problem where the environment does not change. This provides an il-
lustration of the exploitation vs. exploration trade-off which is central to
reinforcement learning. We then move on to consider a more compli-
cated situation where the environment does change. Finally, we men-
tion how reinforcement learning can be used in conjunction with neural
networks and discuss applications.

7.1 The Multi-armed Bandit Problem

Imagine a gambler in a casino that offers a game where one of sever-
al different levers can be pulled. Each lever provides a random payoff.
The payoff from the kth lever is a sample from a normal distribution
with mean 𝑚𝑘 and standard deviation one. The 𝑚𝑘 are liable to be dif-
ferent and are not known. However, the casino guarantees that they will
not change. (In this simple example, the environment does not there-
fore change). The game can be played many times. What strategy should
the gambler follow to maximize the expected payoff over many trials?

Clearly the gambler should keep careful records so that the average
payoff realized so far from each of the levers is known at all times. At
each trial of the game, the gambler has to decide between two alterna-
tives:

 Choose the lever that has given the best average payoff so far
 Try a new lever

This is known as the exploitation vs. exploration choice. The first alter-
native is exploitation (also known as the greedy action). If, after choos-
ing each lever a few times, the gambler only followed the first strategy,
she would not find the best lever unless she was lucky. Some explora-
tion, where another lever is chosen at random, is therefore a good idea.
Exploitation maximizes the immediate expected payoff, but a little ex-
ploration may improve the long-run payoff.

A strategy for the gambler is to:

 Randomly choose a lever with probability 
 Choose the lever that has given the best average payoff so far

with probability 1−

Reinforcement Learning 149

for some  (0 < ≤. We can implement this strategy by sampling a

random number between 0 and 1. If it is less than  the lever is chosen
randomly; otherwise, the lever with the best average payoff so far is
chosen. We might choose a value of equal to one initially and then
slowly reduce it to zero as data on the payoffs is obtained.

Suppose that the kth lever has been chosen n−1 times in the past and
the total reward on the jth time it was chosen was 𝑅𝑗 . The best estimate

of the expected reward from the kth lever (which we will refer to as the
old estimate) is

𝑄𝑘
old =

1

𝑛 − 1
∑ 𝑅𝑗

𝑛−1

𝑗=1

If the kth lever is chosen for the nth time on the next trial and produces
a reward Rn, we can update our estimate of the expected reward from
the kth lever as follows:

𝑄𝑘
new =

1

𝑛
∑ 𝑅𝑗 =

𝑛 − 1

𝑛
𝑄𝑘

old +
1

𝑛
𝑅𝑛

𝑛

𝑗=1

which can be written as

𝑄𝑘
new = 𝑄𝑘

old +
1

𝑛
(𝑅𝑛 − 𝑄𝑘

old) (7.1)

This shows that there is a simple way of updating the expected reward.
We do not have to remember every reward on every trial.

Consider a situation where there are four levers and

𝑚1 = 1.2, 𝑚2 = 1.0, 𝑚3 = 0.8, 𝑚4 = 1.4

The gambler would of course choose the fourth lever every time if these
values were known. However, the mk have to be inferred from the re-
sults of trials. We first suppose that is kept constant at 0.1. This means
that there is always a 90% chance that the gambler will choose the lever
that has given the best result so far and a 10% chance that a lever will
be chosen at random. The results from a Monte Carlo simulation run are
shown in Table 7.1 (see Excel file for calculations). We arbitrarily set
the Q-values (i.e., average payoffs) for each lever equal to zero initially.
Lever one is chosen on the first trial and gives a payoff of 1.293 (slightly

150 Chapter 7

above average). The Q-value for the first lever therefore becomes 1.293
while those for the others stay at zero. On the second trial there is
therefore a 10% chance that gambler will explore (i.e., choose a lever at
random) and a 90% chance that she will choose the first lever. In fact,
she chooses the first lever (but gets a particularly low payoff of 0.160).
The first lever is still the best one with a Q-value of 0.726. The decision
on the third trial is to exploit and so the first lever is chosen again. On
the fourth trial, she explores (because a random number less than 0.1 is
drawn) and randomly selects the second lever.

Table 7.1 Results from 5000 trials with four levers and = 0.1

The “Nobs” column in Table 7.1 shows the number of times a lever
has been chosen, and therefore the number of observations over which
the average payoff is calculated. In the first 50 trials the best lever (Lev-
er 4) is not chosen at all. However, in the first 500 trials it is chosen 387
times (i.e., on 77% of trials). In the first 5,000 trials it is chosen 4,527
times (i.e., on just over 90% of the trials). The table shows that, after
what appears to be a rocky start, the algorithm finds the best lever
without too much difficulty. The average gain per trial over 5,000 trials
is 1.345, a little less than the 1.4 average payout per trial from the best
(fourth) lever.

Tables 7.2 and 7.3 show the results of keeping  constant at 0.01 and
0.5. There are a number of conclusions we can draw from these tables.
Setting= 0.01 gives very slow learning. Even after 5,000 trials the first
lever looks better than the fourth lever. What is more the average gain
per trial over 5,000 trials is worse than when =0.1. When = 0.5 (so
that there is always an equal chance of exploitation and exploration) the
algorithm finds the best lever without too much difficulty, but the aver-
age gain per trial is inferior to that in Table 7.1 because there is too
much exploration.

Lever Ave Gain

Trial Decision Chosen Payoff Q-val Nobs Q-val Nobs Q-val Nobs Q-val Nobs per trial

0 0 0 0

1 Exploit 1 1.293 1.293 1 0.000 0 0.000 0 0.000 0 1.293

2 Exploit 1 0.160 0.726 2 0.000 0 0.000 0 0.000 0 0.726

3 Exploit 1 0.652 0.701 3 0.000 0 0.000 0 0.000 0 0.701

4 Explore 2 0.816 0.701 3 0.816 1 0.000 0 0.000 0 0.730

50 Exploit 1 0.113 1.220 45 -0.349 3 0.543 2 0.000 0 1.099

100 Exploit 4 2.368 1.102 72 0.420 6 0.044 3 1.373 19 1.081

500 Explore 3 1.632 1.124 85 1.070 17 0.659 11 1.366 387 1.299

1000 Exploit 4 2.753 1.132 97 0.986 32 0.675 25 1.386 846 1.331

5000 Exploit 4 1.281 1.107 206 0.858 137 0.924 130 1.382 4527 1.345

Lever 1 (stats) Lever 2 (stats) Lever 3 (stats) Lever 4 (stats)

Reinforcement Learning 151

Table 7.2 Results from 5000 trials with four levers and = 0.01

Table 7.3 Results from 5000 trials with four levers and = 0.5

As indicated earlier, the best strategy is to start with close to 1 and

reduce it as data on the payoffs is accumulated. One approach is to set
equal to 1 on the first trial and then multiply it by a decay factor
slightly less than 1 on each subsequent trial. If the decay factor is  the
probability of exploration on trial  is β𝜏−1. Table 7.4 shows results for
the multi-armed bandit problem we have been considering when =
0.995. It can be seen that these results are superior to those in Table 7.1
where a constant  equal to 0.1 is used. The algorithm quickly finds the
best lever and produces a average gain per trial of 1.381 (compared
with 1.345 for  = 0.1).

Like most hyperparameters, the decay factor  must be chosen by
trial and error. Reducing  to 0.99 often works well but occasionally
fails to find the best lever. Increasing  to 0.999 does find the best lever,
but not as quickly as =0.995. (See Exercise 7.10.)

Lever Ave Gain

Trial Decision Chosen Payoff Q-val Nobs Q-val Nobs Q-val Nobs Q-val Nobs per trial

0 0 0 0

1 Exploit 1 1.458 1.458 1 0.000 0 0.000 0 0.000 0 1.458

2 Exploit 1 0.200 0.829 2 0.000 0 0.000 0 0.000 0 0.829

3 Exploit 1 2.529 1.396 3 0.000 0 0.000 0 0.000 0 1.396

4 Exploit 1 -0.851 0.834 4 0.000 0 0.000 0 0.000 0 0.834

50 Exploit 1 1.694 1.198 49 0.000 0 -0.254 1 0.000 0 1.169

100 Exploit 1 0.941 1.132 99 0.000 0 -0.254 1 0.000 0 1.118

500 Exploit 1 0.614 1.235 489 0.985 6 -0.182 2 0.837 3 1.224

1000 Exploit 1 1.623 1.256 986 0.902 7 -0.182 2 0.749 5 1.248

5000 Exploit 1 1.422 1.215 4952 1.022 18 0.270 8 1.148 22 1.213

Lever 1 (stats) Lever 2 (stats)Lever 3 (stats) Lever 4 (stats)

Lever Ave Gain

Trial Decision Chosen Payoff Q-val Nobs Q-val Nobs Q-val Nobs Q-val Nobs per trial

0 0 0 0

1 Exploit 1 0.766 0.766 1 0.000 0 0.000 0 0.000 0 0.766

2 Explore 1 1.257 1.011 2 0.000 0 0.000 0 0.000 0 1.011

3 Exploit 1 -0.416 0.536 3 0.000 0 0.000 0 0.000 0 0.536

4 Explore 3 0.634 0.536 3 0.000 0 0.634 1 0.000 0 0.560

50 Explore 4 0.828 1.642 17 1.140 9 0.831 9 1.210 15 1.276

100 Explore 3 2.168 1.321 47 0.968 15 0.844 16 1.497 22 1.231

500 Explore 1 0.110 1.250 86 0.922 65 0.636 72 1.516 277 1.266

1000 Explore 4 1.815 1.332 154 1.004 129 0.621 131 1.394 586 1.233

5000 Explore 3 2.061 1.265 666 0.953 623 0.797 654 1.400 3057 1.247

Lever 1 (stats) Lever 2 (stats)Lever 3 (stats) Lever 4 (stats)

152 Chapter 7

Table 7.4 Results from 5,000 trials with four levers when  starts at 1
with a decay factor of 0.995

7.2 Changing Environment

The multi-armed bandit problem provides a simple example of rein-
forcement learning. The environment does not change and so the Q-
values are a function only of the action (i.e., the lever chosen). In a more
general situation, there are a number of states and a number of possible
actions. This is illustrated in Figure 7.1. The decision maker takes an
action, A0, at time zero when the state S0 is known. This results in a re-
ward, R1, at time 1 and a new state, S1, is encountered. The decision
maker then takes another action at time 1 which results in a reward, R2,
at time 2 and a new state, S2; and so on. In this more general situation,
the Q-value is a function of both the state and the action taken.

Our aim is to maximize future expected rewards. A simple objective
at time t is therefore to maximize the expected value of G where

𝐺 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯ +𝑅𝑇

and T is a horizon date. In some cases, it is appropriate to maximize dis-
counted rewards over a (possibly infinite) horizon. The reinforcement
learning literature then uses the following expression for G:

𝐺 = 𝑅𝑡+1 + γ𝑅𝑡+2 + γ2𝑅𝑡+3 + ⋯ (7.2)

Lever Ave Gain

Trial Decision Chosen Payoff Q-val Nobs Q-val Nobs Q-val Nobs Q-val Nobs per trial

0 0 0 0

1 Explore 2 1.4034 0 0 1.403 1 0 0 0.000 0 1.403

2 Explore 1 0.796 0.796 1 1.403 1 0.000 0 0.000 0 1.100

3 Explore 2 0.499 0.796 1 0.951 2 0.000 0 0.000 0 0.900

4 Explore 1 0.407 0.601 2 0.951 2 0.000 0 0.000 0 0.776

50 Explore 3 -1.253 0.719 8 1.640 18 0.729 11 1.698 13 1.308

100 Explore 1 0.100 0.852 19 1.326 31 0.681 20 1.391 30 1.126

500 Exploit 4 -0.448 1.148 37 1.184 51 0.815 51 1.349 361 1.263

1000 Exploit 4 2.486 1.174 44 1.225 53 0.819 53 1.387 850 1.339

5000 Exploit 4 3.607 1.148 45 1.225 53 0.819 53 1.391 4849 1.381

Lever 1 (stats) Lever 2 (stats)Lever 3 (stats) Lever 4 (stats)

Reinforcement Learning 153

where  (< 1) is the discount factor.2 Finance professionals are likely to
interpret as 1/(1 + r) where r is the discount rate per period (possibly
adjusted for risk). But this interpretation leads to the coefficient of 𝑅𝑡+𝑘

being γ𝑘 rather than γ𝑘−1 . The simplest way of reconciling equation
(7.2) with the discount rates used in finance is to define the reward
𝑅𝑡+𝑘 as the cash received at time t+k discounted by one period. (i.e., if
the cash received at time t + k is C then 𝑅𝑡+𝑘 = γ𝐶.)

Figure 7.1 Reinforcement learning in a changing environment

 Note that the states must include everything relevant to the action
taken. For example, if we are developing a trading strategy and the past
history of stock prices is relevant, they must be included in the “cur-
rent” state.

The Q-values in the general situation reflect all future rewards, pos-
sibly discounted. Suppose that on a particular trial the total value of the
future rewards from taking action A in state S is G. Suppose further that
this is the nth trial where action A has been taken in state S. Analogously
to equation (7.1), we might update as follows:

𝑄new(𝑆, 𝐴) = 𝑄old(𝑆, 𝐴) +
1

𝑛
[𝐺 − 𝑄old(𝑆, 𝐴)]

In practice, in a changing environment it usually makes sense to give
more weight to recent observations. We can do this by setting

2 See, for example, R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduc-
tion, 2nd edition, 2018, The MIT Press, Chapter 3.

S0 A0
R1

S1
A1

R2

S2

A2
R3

S3
A3

Initial
State

Action Taken
time 0

Reward time 1
State time 1

Action Taken
time 1

Reward time 2
State time 2

Reward time 3
State time 3

Action Taken
time 2

Action Taken
time 3

154 Chapter 7

𝑄new(𝑆, 𝐴) = 𝑄old(𝑆, 𝐴) + α[𝐺 − 𝑄old(𝑆, 𝐴)] (7.3)

The weight given to an observation then declines as it becomes older.

7.3 The Game of Nim

The game of Nim provides an illustration of the material in the Sec-
tion 7.2. Imagine that there is a pile of matches. You and your opponent
take turns to pick up one or two or three matches. The person who is
forced to pick up the last match loses.

A little thought indicates that as the game nears the end you will win
if you leave your opponent with five matches. Whatever your opponent
picks up you will then be able to leave her with just one match on the
next round. For example, if she picks up two matches you also pick up
two matches; if she picks up three matches you pick up one match. How
do you get to the stage where you can leave your opponent with five
matches? The answer is that, if you leave her with nine matches, you
will always be able to reduce the pile to five matches on your next turn.
Continuing in this way, it is not difficult to see that the way to win is to
always leave your opponent with 4n+1 matches where n is an integer.
Of course, if your opponent is savvy, she will try and do the same and so
who wins will depend on the initial number of matches and who goes
first.

Let us consider how you would analyze Nim with reinforcement
learning. We assume that your opponent behaves randomly rather than
optimally. The state, S, is the number of matches left and the action, A, is
the number of matches picked up. With probability 1− the algorithm
picks the best action identified so far for a particular state and with
probability  it randomly chooses an action. We start by setting all the
Q’s equal to 0. This is shown in Table 7.5. Somewhat arbitrarily we set
the reward for winning the game to +1 and the reward for losing the
game to −1. In this example there is no reward until the end. We as-
sume that  in equation (7.3) equals 0.05.

Table 7.5 Initial Q-values

Matches

picked up 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0

State (= number of matches left)

Reinforcement Learning 155

To keep the example simple, the games we consider start with only 8
matches. Suppose that on the first game you pick up 1 match, your op-
ponent’s (random) decision is to pick up 3 matches. You then pick up 1
match and your opponent picks up 3 matches. You win and obtain a re-
ward of +1. Equation (7.3) gives

Q(8, 1) = 0+0.05(1−0) = 0.05

because, when there are 8 matches and you pick up 1, you end up get-
ting a payoff of +1. Also

Q(4, 1) = 0+0.05(1−0) = 0.05

because, when there are 4 matches and you pick up 1, you end up get-
ting a payoff of +1. This leads to Table 7.6.

Table 7.6 Q-values after one game

Suppose that on the next game you initially pick up 1 match and your
opponent picks up 2 matches. You pick up one match and your oppo-
nent picks up 3 matches. You have to pick up the remaining match and
lose for a payoff of −1. This leads to Table 7.7 with Q(8,1) and Q(5,1)
being updated as follows:

Q(8, 1) = 0.05+0.05(−1−0.05) = −0.0025

Q(5,1)= 0+0.05(−1−0) = −0.05

Table 7.7 Q-values after two games

Matches

picked up 2 3 4 5 6 7 8

1 0 0 0.05 0 0 0 0.05

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0

State (= number of matches left)

Matches

picked up 2 3 4 5 6 7 8

1 0 0 0.05 −0.05 0 0 −0.0025

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0

State (= number of matches left)

156 Chapter 7

Tables 7.8, 7.9, and 7.10 show the situation after 1,000, 5,000, and
25,000 games for one simulation assuming that the initial value of  is 1
and the decay factor applied to it is 0.9995.3 The algorithm requires
more data than the multi-armed bandit example, but eventually it
learns the correct strategy which is:

 When there are 8 matches, the correct strategy is to pick up 3
matches.

 When there are 6 matches, the correct strategy is to pick up 1
match.

 When there are 5 matches there are no good strategies.
 When there are 4 matches, the correct strategy is to pick up 3

matches.
 When there are 3 matches, the correct strategy is to pick up 2

matches.
 When there are 2 matches, the correct strategy is to pick up one

match.

Table 7.8 Q-values as a function of state and action after 1,000 games
(see Excel file for calculations)

Table 7.9 Q-values as a function of state and action after 5,000 games
(see Excel file for calculations)

3 In this case there are two key hyperparameters,  and . Appropriate values can
be determined using trial and error.

Matches

picked up 2 3 4 5 6 7 8

1 0.999 -0.141 0.484 -0.122 0.155 0.000 0.272

2 -0.994 0.999 -0.108 -0.276 -0.171 0.000 0.252

3 0.000 -0.984 1.000 -0.070 -0.080 0.000 0.426

State (= number of matches left)

Matches

picked up 2 3 4 5 6 7 8

1 1.000 -0.127 0.382 0.069 0.898 0.000 0.786

2 -1.000 1.000 0.222 0.297 -0.059 0.000 0.683

3 0.000 -1.000 1.000 -0.106 0.041 0.000 0.936

State (= number of matches left)

Reinforcement Learning 157

Table 7.10 Q-values as a function of state and action after 25,000
games (see Excel file for calculations)

7.4 Temporal Difference Learning

The method in the previous section is referred to as the Monte Carlo
method. We now present an alternative approach.

In the general situation, we can define 𝑉𝑡(𝑆) as the value at time t as-
suming that we are in state S and the actions taken subsequently are
optimal. Assuming no discounting this means that

𝑉𝑡(𝑆) = max
𝐴

 𝐸[𝑅𝑡+1 + 𝑉𝑡+1(𝑆′)]

where 𝑆′ is the state at time t+1 assuming that action A is taken at time
t. A similar equation can be used to relate 𝑉𝑡+1to 𝑉𝑡+2, 𝑉𝑡+2 to 𝑉𝑡+3, and
so on. This allows a dynamic programming method developed by Rich-
ard Bellman to be used in relatively simple situations. We start by con-
sidering all the states that could arise at the horizon time T and work
backward. First, we calculate the optimal actions for states that could
arise at time T−1. Given this we calculate the optimal actions for states
at time T−2, and so on.

As mentioned earlier, the strategy for winning at Nim is to leave
your opponent with 4n+1 matches for some integer n. To prove this
formally we can show (a) that we win if we leave the opponent with five
matches and (b) that if we leave our opponent with 4n+1 matches after
one turn we can leave her with 4(n−1) +1 matches after the next turn (n
> 1). This is a simple example of dynamic programming where we are
in effect working back from the end of the game to find the optimal cur-
rent decision.

 Unfortunately, dynamic programming is not practical for many large
problems, but reinforcement learning can use the ideas underlying dy-
namic programming. As before, we define Q(S, A) as the current esti-
mate of the value of taking action A in state S. The value of being in
state S is

Matches

picked up 2 3 4 5 6 7 8

1 1.000 0.080 0.104 0.069 0.936 0.000 0.741

2 -1.000 1.000 0.103 0.412 -0.059 0.000 0.835

3 0.000 -1.000 1.000 -0.106 0.041 0.000 1.000

State (= number of matches left)

158 Chapter 7

𝑉(𝑆) = max
𝐴

 𝑄(𝑆, 𝐴))

For example, after 5,000 games we would calculate from Table 7.9
V(8)=0.936, V(6)=0.898, V(5)=0.297, V(4)=1.000, V(3)=1.000, and
V(2)= 1.000.

In the Monte Carlo method, we update Q(S, A) by observing the total
subsequent gain, G, when a particular decision is taken in a particular
state. We can use the ideas underlying dynamic programming and look
just one time-step ahead. Suppose that when we take action A in state S
we move to state 𝑆′. We can use the current value for 𝑉(𝑆′) to update
as follows:

𝑄new(𝑆, 𝐴) = 𝑄old(𝑆, 𝐴) + α[𝑅 + γ𝑉(𝑆′) − 𝑄old(𝑆, 𝐴)]

where R is the reward at the next step and  is the discount factor.

In the Nim example, suppose that the current Q-values are those
shown in Table 7.9. Suppose further that the results on the next game
are as follows:

 You explore and choose 1match
 Your opponent chooses 1 match
 You exploit and choose 1 match
 Your opponent chooses 3 matches
 You exploit and choose 1 match
 Your opponent chooses 1 match
 You win

 With  = 0.05 and =1, Q(8,1) would be updated as follows

𝑄new(8,1) = 𝑄old(8,1) + 0.05[𝑉(6) − 𝑄old(8,1)]

 = 0.786 + 0.05 × (0.898 − 0.786)
 = 0.792

Also Q(6,1) would be updated as follows

𝑄new(6,1) = 𝑄old(6,1) + 0.05[𝑉(2) − 𝑄old(6,1)]

 = 0.898 + 0.05 × (1.000 − 0.898)
 = 0.903

and Q(2,1) would be updated as

Reinforcement Learning 159

𝑄new(2,1) = 𝑄old(2,1) + 0.05[1.000 − 𝑄old(2,1)]

 = 1.000 + 0.05 × (1.000 − 1.000)
 = 1.000

This procedure is known as temporal difference learning. Here we
are looking only one step ahead. (A “step” is a move by you and then by
your opponent.) A natural extension of temporal difference learning is
where we look n steps ahead. This is referred to as n-step bootstrapping.

7.5 Deep Q-Learning

The temporal difference approach we have described is referred to
as Q-learning. When there are many states or actions (or both), the cells
of the state−action table do not get filled up very quickly. It then be-
comes necessary to estimate a complete Q(S, A) function from the re-
sults that have been obtained. As the Q(S, A) function is in general non-
linear, an artificial neural network (ANN) is the natural tool for this. Us-
ing Q-learning in conjunction with an ANN is known as deep Q-learning
or deep reinforcement learning.

7.6 Applications

One of the most widely publicized applications of reinforcement
learning is AlphaGo. This is a computer program developed by Google to
play the board game Go. In May 2017, it surprised professional Go play-
ers by beating the world champion Go player, Ke Jie, three games to ze-
ro. It generated data to improve its performance by playing against it-
self many times. (Exercise 7.12 asks you to do something analogous to
this by deriving a Nim strategy where your opponent learns how to play
the game, rather than making random decisions.)

Reinforcement learning has found applications other than playing
games. For example, reinforcement learning is used for driverless cars,
resource management, and the programming of traffic lights.4
Healthcare is an area that has seen interesting applications of rein-

4 See, for example, the work of H. Mao, M. Alizadeh, I. Menache, and S. Kandula,
2016, entitled “Resource Management with Deep Reinforcement Learning”:
https://people.csail.mit.edu/alizadeh/papers/deeprm-hotnets16.pdf; and I. Arel, C.
Liu, T. Urbanik, and A.G.Kohls, 2010, “Reinforcement Learning-based Multi-agent
System for Network Traffic Signal Control,” IET Intell. Transp. Syst., 4, 2: 128−135.

https://people.csail.mit.edu/alizadeh/papers/deeprm-hotnets16.pdf

160 Chapter 7

forcement learning.5 Treating a patient is a multistage activity. The doc-
tor chooses one action, observes the result, chooses another action, and
so on. If enough data is available, algorithms should be able to deter-
mine the optimal action for any state. However, it is worth pointing out
some of the problems that have been experienced because they are typ-
ical of those encountered in reinforcement learning:

 Data will tend to be biased toward the treatment option that is

currently favored by physicians and so it may be difficult for the
algorithm to identify treatments that are better than those cur-
rently used.

 It is difficult to come up with a reward function. How, for exam-
ple, do you trade off quality of life with the length of a patient’s
life?

 A sufficient quantity of relevant data might not exist or if it does
exist it might not have been collected in a way that can be used by
a reinforcement learning algorithm.

Reinforcement learning generally requires much more data than su-
pervised learning. Often the data is simply not available. An analyst can
then try to determine a model of the environment and use that as a way
of generating simulated data for input to a reinforcement learning algo-
rithm,

There are a number of potential applications of reinforcement learn-
ing in finance. Consider a trader who wants to sell a large block of
shares. What is the optimal strategy? If the trader chooses to sell all the
shares in a single trade, she is likely to move the market and the price
received may be less than that realized if a series of small trades are
undertaken. But if the share price declines sharply, a series of small
trades will not work out well.6

Another application is to portfolio management.7 This is a multi-
stage activity. Changing the composition of a portfolio too frequently

5 See I. Godfried, 2018, “A Review of Recent Reinforcement Learning Applications to
Healthcare” at https://towardsdatascience.com/a-review-of-recent-reinforcment-
learning-applications-to-healthcare-1f8357600407.
6 This is considered by a number of authors, for example, Y. Nevmyvaka, Y. Feng,
and M. Kearns, “Reinforcement Learning for Optimized Trade Execution.”
https://www.seas.upenn.edu/~mkearns/papers/rlexec.pdf.
7 For some examples of this, see Y. Huang, “Financial Trading as a Game: A Deep
Reinforcement Learning Approach,” arXiv:1807.02787; Z. Liang, H. Chen, J. Zhu, K.
Jiang and Y. Li, “Adversarial Deep Reinforcement Learning in Portfolio Manage-
ment,” arXiv:1808.09940; Z. Jiang, D. Xu, and J. Liang, “A Deep Reinforcement Learn-

https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407
https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407
https://www.seas.upenn.edu/~mkearns/papers/rlexec.pdf
https://arxiv.org/abs/1807.02787
https://arxiv.org/abs/1808.09940

Reinforcement Learning 161

will involve transaction costs.8 The past history of stock price returns
can be used to evaluate the actions that should be taken in different cir-
cumstances. In this case, the reward function should be chosen carefully
so that it penalizes risks as well as encouraging strategies that lead to
high expected returns.

A further application is to hedging. There is a trade-off between the
frequency of hedging and the reduction in risk. Risk can be reduced by
increasing the frequency of trading but this also leads to an increase in
transaction costs. Traditionally, derivatives have been hedged by calcu-
lating their theoretical sensitivity to the price of the underlying asset,
the volatility of the underlying asset, and other risk factors. Reinforce-
ment learning provides an alternative which we discuss further in
Chapter 10.

Summary

Reinforcement learning is concerned with sequential decision mak-
ing. The set-up involves actions and states. The actions taken lead to
rewards and costs. The Q-function estimates the expected reward (net
of costs) from taking a particular action when the environment is de-
scribed by a particular state. The best action in a particular state is one
for which the Q-function is greatest.

An important aspect of reinforcement learning is the exploitation vs.
exploration choice. When learning from simulated or historical data, it
is tempting to take an action that seems best based on the data that has
been seen so far. However, if the algorithm always does this, it stops
learning because it never tries a new action. A reinforcement learning
algorithm therefore assigns a probability  to an action that is chosen
randomly and 1− to the best action identified so far. Typically,  is
close to one initially and declines as the model learns from data.

We have illustrated the exploitation vs. exploration trade-off with
two examples. One involves the multi-armed bandit problem which is a
well-known problem in statistics. A gambler attempts to learn which of
a number of one-armed bandits in a casino gives the highest average
payout. This is a relatively simple example of reinforcement learning

ing Framework for the Financial Portfolio Management Problem,” arXiv:
1706.10059.pdf
8 One source of transaction costs is the bid−ask spread. A portfolio manager typical-
ly has to buy at a market maker’s ask price and sell at the market maker’s bid price
with the ask price being greater than the bid price.

162 Chapter 7

because the environment (i.e., the state) never changes. The other ex-
ample involves the game of Nim where the state is defined by the num-
ber of matches left and the action is the number of matches picked up.
In both cases, we have shown that reinforcement learning provides a
way of learning the best strategy.

The value of taking a particular action in a particular state is referred
to as the Q-value. The best value for a state is the maximum of the Q-
values over all possible actions. There are a number of different ways of
updating Q-values. One is to base the updating on the total net reward
(possibly discounted) between the current time and the horizon date.
Another is to look only one action ahead and base the updating on the
best value calculated so far for being in the state that exists at the time
of the next action. Other updating procedures are between these two
extremes where we look several actions ahead in calculating the conse-
quences of an action.

In real-world applications of reinforcement learning there are usual-
ly a large number of states and actions. One way of coping with this is to
use reinforcement learning in conjunction with artificial neural net-
works (ANNs). Reinforcement learning generates the Q-values for some
state−action combinations and an ANN is used to estimate a more com-
plete function.

SHORT CONCEPT QUESTIONS

7.1 How does reinforcement learning differ from supervised learn-

ing?
7.2 Explain why a reinforcement learning algorithm needs to involve

both exploration and exploitation.
7.3 Explain how dynamic programming works.
7.4 What is the optimal strategy for playing Nim? To what extent has

the Monte Carlo simulation found the best action after 1,000,
5,000, and 25,000 games in Tables 7.8 to 7.10?

7.5 Explain the Monte Carlo approach to reinforcement learning.
7.6 What is meant by temporal difference learning?
7.7 Why is it sometimes necessary to use an artificial neural network

in conjunction with reinforcement learning?
7.8 What is meant by deep Q-learning?

Reinforcement Learning 163

EXERCISES

7.9 Suppose that Table 7.8 shows the current Q-values for Nim. In the
next game you win because one match is always picked up by
both you and your opponent. How would the table be updated for
(a) the Monte Carlo approach and (b) the temporal difference
learning approach?

7.10 Use the worksheet in www-2.rotman.utoronto.ca/~hull for the
multi-armed bandit problem to investigate the impact of using
different values for the decay factor, 

7.11 Change the Nim Visual Basic program available at
www-2.rotman.utoronto.ca/~hull

 so that it uses temporal difference learning rather than the Monte
Carlo approach. Compare how quickly the two approaches find
the best move when there are eight matches.

7.12 Change the Nim Visual Basic program available at
www-2.rotman.utoronto.ca/~hull

 so that your opponent learns the best strategy rather than behav-
ing randomly.

165

Chapter 8

Natural Language Processing

Up to now we have talked about applying machine learning algo-
rithms to numerical or categorical data. We now move on to consider
the way machine learning can handle language. This is known as natu-
ral language processing (NLP) or computational linguistics. It is becom-
ing increasingly important because much of the data generated in the
world is in the form of written or spoken words.

The development of NLP applications is challenging because the
rules of language are difficult to communicate to a machine and words
can have several meanings. Also, a human being can pick up nuances in
language which are almost impossible for a machine to recognize. For
example, it is difficult for a machine to recognize sarcasm or irony. In
spite of this, a great deal of progress has already been made and we can
expect to see exciting developments in NLP in the future.

In Chapter 1, we mentioned Google Neural Machine Translation
which has been very successful in translating text from one language to
another. Applications such as Siri on iPhones and Amazon’s Alexa can
recognize human speech to perform a variety of simple tasks. Programs
for accurately converting speech to text work well. It seems likely that
machines will soon take over the role of professional translators. Two
individuals who speak different languages will then be able to com-
municate seamlessly.

166 Chapter 8

There are many different natural language processing applications.
This chapter will focus for the most part on what is referred to as senti-
ment analysis. This involves the processing of data from such sources as
surveys and social media to determine whether it is positive, negative,
or neutral about a particular product, company, person, event, etc. The
sheer volume of the data available today often makes manual pro-
cessing unrealistic.

NLP allows a company to monitor customer responses to its prod-
ucts and its actions. This can be done in real time and provides im-
portant inputs to the company’s decision making. For example, when a
company markets a new product, the comments from customers can be
lead to timely decisions. In 1985, Coca-Cola changed its drink’s formula
for the first time in 99 years. The new product was not popular and the
older formula was eventually reintroduced as Coca-Cola Classic. Today,
NLP and the huge amount of data that is available on social media and
elsewhere would enable the company to determine the market’s re-
sponse to the new formula very quickly.

When a company uses a new advertisement, it can use NLP to assess
how well it is received by consumers. If the reaction of consumers is
negative, the advertisement can be pulled quickly. This could have been
useful for Gillette’s “the best men can be” advertisement in January
2019, which was not at all well received. NLP can also be used to avoid
public relations disasters. When United Airlines forcibly removed a pas-
senger who was an Asian-American doctor from one of its planes in
April 2017, the initial statements from the company only served to in-
flame the situation. NLP could have been used to assess the public’s re-
sponse very quickly. The company could then have issued an almost
immediate unconditional apology to mitigate the event’s negative im-
pact (particularly on its Asian customers).

NLP has many applications for stock market investors. If news re-
ports about a company or quarterly earnings calls to analysts are posi-
tive (negative), we might expect the stock price to increase (decrease).
Zhang and Skiena were among the first researchers to investigate this.1
They ranked companies by a sentiment measure derived from news
reports each day. They then constructed a portfolio which was long
stocks where the sentiment measure was positive and short stocks
where the sentiment measure was negative. The value of the stocks in
the long portfolio equaled the value of the stocks in the short portfolio

1 See W. Zhang and S. Skiena, “Trading strategies to exploit blog and news senti-
ment,” 2010, Proceedings of the 4th international AAAI Conference on Weblogs and
Social Media.
www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/viewFile/1529/1904

http://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/viewFile/1529/1904

Natural Language Processing 167

so that the portfolio was market neutral (i.e., its return was not affected
by the performance of the stock market as a whole). Their results
showed that trading relatively few stocks and holding them for short
periods produced impressive returns.

Before readers rush out to develop their own trading strategies
based on media reports, a word of caution is in order. An important
theory concerning the way prices are formed in financial markets is the
efficient markets hypothesis. This argues that financial markets reflect
all known information. As NLP research findings, such as those of Zhang
and Skiena just mentioned, get well known we can expect more traders
to use NLP to guide their trading and as a result market prices will ad-
just almost immediately to news reports. It will then not be possible to
generate the large returns realized by researchers in their experiments.

Does this mean that it is too late to profit from using NLP for invest-
ing? That is not necessarily the case. New data sources are becoming
available all the time. One approach is to try and be one step ahead of
most others in exploiting these new data sources. Another is to develop
better models than those being used by others and then be very secre-
tive about it. Renaissance Technologies, a hedge fund, provides an ex-
ample of the second approach. It has been amazingly successful at using
sophisticated models to understand stock price patterns. Other hedge
funds have been unable to replicate its success. The average return of
its flagship Medallion fund between 1988 and 2018 was 66% per year
before fees. This included a return of close to 100% in 2008 when the
S&P 500 lost 38.5%. Two senior executives, Robert Mercer and Peter
Brown, are NLP experts and have been running the company following
the retirement of the founder, Jim Simons, in 2009.2

Python contains a number of tools for NLP. Downloading data from
the web is referred to as web scraping (and also as screen scraping,
web data extraction, and web harvesting). Most data on the web is in
the form of *.html files and Beautiful Soup is a useful resource for con-
verting these to files than are better for analysis. Natural Language
Toolkit (NLTK) is a platform for building Python programs. It contains
many different tools to help out with the analyses that will be described
in this chapter.

In the next few sections, we will assume that opinions about some
activity of a company are to be classified. But the approaches suggested
can be used in many other situations. For example, another popular ap-

2 For more information about Renaissance Technologies, see G. Zuckerman, The
man who solved the market: How Jim Simons launched the quant revolution, 2019,
Penguin Random House.

168 Chapter 8

plication is to distinguish emails that are spam from those that are non-
spam (sometimes referred to as ham).

8.1 Sources of Data

In sentiment analysis, an analyst wants to use data that has been col-
lected to predict the sentiment of new opinions. A conclusion from the
analysis might be “the opinions being expressed at the moment about
our product are 82% positive and 18% negative.” If opinions are being
classified as “positive”, “negative”, or “neutral”, the conclusion might
take the form “the opinions currently being expressed about our prod-
uct are 60% positive, 20% negative and 20% neutral.” Sometimes a
numerical scale is involved, e.g., 1=very negative, 2=somewhat negative,
3= neutral, 4=somewhat positive, 5=very positive. An output from NLP
could then be, “the average current sentiment is 3.9.”

The general approach to sentiment analysis is similar to that for oth-
er machine learning applications that have been discussed in this book.
We collect data that has been labeled in one of the ways just discussed
(e.g., positive or negative). We divide the data into a training set and a
test set. (If several different models are being compared a validation set
is also a good idea, as discussed in Chapter 1.) We use the training set to
develop the required model(s). A validation set can be used to choose
between models. The test data evaluates the accuracy of the chosen
model. The model is then used as a classification tool for new opinions.

Where do the labeled opinions come from? We have to base the la-
bels on past opinions. There are publicly available data sets where opin-
ions have been labeled and these are sometimes used to train and test a
model. However, data sets that have been used for one situation may
not be appropriate for another. For example, opinions about movies
together with positive/negative labels may not be appropriate for as-
sessing opinions about a consumer product used in the kitchen.3

The best (and most expensive) approach involves a company collect-
ing a large number of opinions that customers have given for its prod-
ucts or actions in the past and asking one or more human beings to label
them in one of the ways discussed above.

It is worth noting that that human beings agree on how an opinion
should be labeled only about 80% of the time and so a model that
agrees with human judgement 100% of the time is unrealistic. Typical-

3 Movie reviews are a convenient source of data for sentiment analysis because they
are usually labeled with between one and five stars.

Natural Language Processing 169

ly a good model will agree with human judgement perhaps 70% of the
time.

8.2 Pre-Processing

Suppose we have managed to obtain a large number of labeled opin-

ions with which to construct a model. A first stage is often pre-
processing, which is a type of data cleaning. The main objectives of pre-
processing is to identify a vocabulary of words that will be considered.

The first stage in pre-processing is known as word tokenization and
involves splitting text into a set of words. It involves looking for spaces
and punctuation. For example,

“The product works well! I would recommend the product to some-

one else.”

becomes

“The”, “product”, “works”, “well”, “!”, “I”, “would”, “recommend”,

“the”, “product”, “to”, “someone”, “else”, “.”

Punctuation can be removed as it usually does not add much infor-

mation. Also, we do not want an algorithm to consider “The” and “the”
to be different words. It therefore makes sense to convert all upper case
characters to lower case.

It is common to remove what are termed stop words. These are
words like “the”, “a”, “in” and “an” which are very common but add very
little to the meaning of text. NLTK has a list of stop words in different
languages and provides a procedure for removing stop words from text.
An analyst can change the list. This can be appropriate in some circum-
stances and the way it is done can depend on the nature of the text be-
ing considered. For example, words removed in legal documents might
be different from those removed in a news article. One approach that
can be used to identify stop words is to list the 10 or 20 most commonly
occurring words in the opinions and then decide whether they should
be retained.

Another type of pre-processing that is sometimes used involves
what is referred to as stemming. This is the removal of suffices such as
“s”, “ing”, “like”, and “ly”. Doing stemming for English text is not trivial.
For example, we would like to replace “drinking” by “drink” but “sitting”
by “sit” and lying” by “lie”. A key objective of stemming is that related

170 Chapter 8

words map to the same stem. The stem itself does not have to be a
word. Thus “arguable”, “argues”, “argued”, “arguing” might all be
mapped to “argu”. A related procedure is lemmatization. This uses a
look up table to determine a mapping of a word into its root word. For
example, “worse” would be mapped to “bad”. Also, when a word has
more than one meaning, lemmatization may attempt to use the context
(i.e., the surrounding words) to find an appropriate root word.

Correcting spelling mistakes is desirable because it avoids duplicate
words such as “machine” and “machne” or “learning” and “learnig”. Fair-
ly sophisticated spell checkers are now available, but they are not per-
fect and occasionally change the intended meaning of a sentence. It is
also important to recognize abbreviations. For example, “u” in a text
message should be changed to “you” and “approx” should be changed to
“approximate”.

It may also be appropriate to remove rare words that appear only
once or twice in the training set. Suppose we are trying to predict
whether a certain news report has a positive or negative effect on a
stock price. If the news report includes the word “myopic”, and that is
the only time the word is used in the training set, it is unlikely that a
model would be able to conclude with any confidence the word has in-
formation content.

The key point here is that the words we finally choose for the vocab-
ulary will be used to classify opinions. Words which appear very occa-
sionally are of little use as are words that appear in virtually all opin-
ions. One approach to help identify the words that should be used is to
retain only those that appear in between, say, 20% and 80% of opin-
ions. (Some experimentation can be used to determine the right high
and low percentages here.)

8.3 Bag-of-Words Model

Assume we have done pre-processing and formed a vocabulary that

will be used for classification. Although we have done our best to reduce
the number of different words that are considered, we may still have
10,000 or more words in the vocabulary. In the bag-of-words model
each opinion is characterized by the number of times each word ap-
pears. To illustrate this with a simple example, suppose that our vocab-
ulary consists of the following list of 10 words

“bad”, “good”, “great”, “much”, “never”, “product”, “recommend”, “some-
one”, “terrible”, “well”

Natural Language Processing 171

Suppose further that we want to classify the opinion mentioned earlier:

“The product works well! I would recommend the product to some-

one else”

A bag-of-words would convert this opinion to

(0, 0, 0, 0, 0, 2, 1, 1, 0, 1)

This indicates that the first word in the list, “bad”, does not appear; the
next four words in the vocabulary also do not appear; the word “prod-
uct” appears twice; and so on. Note that words such as “the” and
“works” appear in the opinion, but not in the vocabulary, and are there-
fore ignored.

How do we decide whether the opinion is positive or negative? A
simple approach, which does not involve machine learning, would be to
write down a list of positive and negative words and determine wheth-
er the opinion contains more positive words than negative words, or
vice versa. The positive words could include “good”, “great”, “recom-
mend”, and “well”. The negative words could include “bad”, “never”, and
“terrible”. If this sort of list making is too much work, there are a num-
ber of sentiment lexicons that can be used.

In the case of the opinion in our example, there are two positive
words (“recommend” and “well”) and no negative words and so the
opinion would be classified as positive. Labeled data can be used to es-
timate the accuracy of the model.

There is no learning going on in this simple approach as the positive
and negative words are provided externally. A more sophisticated ap-
proach is to use the training set to determine the words that most
commonly occur in positive and negative opinions. The words that oc-
cur much more frequently in positive opinions than negative opinions
would be categorized as “positive words” while those that occur much
more frequently in negative opinions than positive opinions would be
categorized as “negative words”. We would have to decide what we
mean here by “much more frequently.” How much more frequently do
words have to be in positive opinions than negative opinions in order to
be “positive words”. Similarly, how much more frequently do words
have to be in negative opinions rather than positive opinions to be
“negative words”. The required difference between the frequencies are
hyperparameters and it is likely to be desirable to use a validation set to
choose good values for them.

172 Chapter 8

One decision that has to be made in all approaches is whether posi-
tive or negative words that occur two or more times in an opinion
should be given more weight. If in our example the word “well” ap-
peared twice instead of once, should it be considered as being equiva-
lent to two positive words or one positive word? There is some re-
search indicating that the repetition of a word provides little additional
information.4

The bag-of-words model takes no account of the order of words. It
just counts the words. Unfortunately, simple word counts can give in-
correct answers. One reason is the presence of negatives. Consider for
example the opinion:

“I would not recommend this product”

Classifying this as a positive opinion because it includes the word “rec-
ommend” would give an incorrect result. One possible improvement is
to consider word pairs as positive or negative. In the opinion just given
the word pairs would be “I would”, “would not” “not recommend”, “rec-
ommend this”, and “this product”. The word pair “not recommend”
would almost certainly be on the negative list.

A set of n consecutive words is referred to as an n-gram. One word is
a unigram, two consecutive words is a bigram, three consecutive words
is a trigram, and so on. We have just shown that bigrams can identify
the negation of a word and avoid some incorrect signals. Trigrams can,
in principle, work even better than bigrams. For example, the trigram
“not so bad” could be a positive trigram. Of course, the problem here is
that the number of possible bigrams is much greater than the number of
possible unigrams, and the number of possible trigrams is greater again.
In what follows we will assume that the analysis is based on unigrams
(single words). But the approaches can be extended to cover bigrams
and trigrams.

8.4 Application of Naïve Bayes Classifier

We introduced the naïve Bayes classifier in Section 4.4. It is a popu-
lar approach for sentiment analysis. Here we introduce an application
of the classifier based on whether particular words occur in opinions.

4 See for example, B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? Sentiment
classification using machine learning techniques” in Proceedings of Empirical Meth-
ods for Natural Language Processing, 2002.

Natural Language Processing 173

The application can be extended so that it is based on a count of the
number of times different words appear.5 The naïve Bayes classifier
assumes that the occurrence of word X in an opinion is uncorrelated
with the occurrence of word Y for all the X and Y that are in the vocabu-
lary being used for classification.

Suppose that there are m words in the vocabulary and our objective
is to classify opinions two ways: positive or negative. If the jth word in
the vocabulary is in a particular opinion, we define pj as the probability
that word j appears in positive opinions and qj as the probability it ap-
pears in negative opinions. If the jth word in the vocabulary is not in a
particular opinion, we define pj as the probability that word j does not
appear in positive opinions and qj as the probability it does not appear
in negative opinions. The naïve Bayes classifier gives the probability
that the opinion is positive as

Prob(Positive|words) =
𝑝1𝑝2 … 𝑝𝑚

Prob(words)
Prob (Positive)

and the probability that it is negative as

Prob(Negative|words) =
𝑞1𝑞2 … 𝑞𝑚

Prob(words)
Prob (Negative)

where “words” refers to the list defining whether words are in an opin-
ion or not, and Prob (Positive), Prob (Negative), and Prob (words) are
unconditional probabilities. Because the two probabilities must add up
to one, Prob(Positive|words) is

𝑝1𝑝2 … 𝑝𝑚 × Prob (Positive)

𝑝1𝑝2 … 𝑝𝑚 × Prob (Positive) + 𝑞1𝑞2 … 𝑞𝑚 × Prob (Negative)

while Prob(Negative|words) is

𝑞1𝑞2 … 𝑞𝑚 × Prob (Negative)

𝑝1𝑝2 … 𝑝𝑚 × Prob (Positive) + 𝑞1𝑞2 … 𝑞𝑚 × Prob (Negative)

The naïve Bayes classifier can easily be extended to the situation

where there are more than two classifications. For example, if we are
classifying an opinion as positive, negative, or neutral, we can define rj

5 As indicated in the previous section, multiple occurrences of a word in an opinion
may not have more information than a single occurrence.

174 Chapter 8

as the probability that word j appears in a neutral opinion if it is in the
opinion under consideration and as the probability that word j does not
appear in a neutral opinion if it is not in the opinion under considera-
tion. Define P, Q, and R as the unconditional probability of positive, neg-
ative, and neutral observations. Then

Prob(Positive|words) =
𝑝1𝑝2 … 𝑝𝑚𝑃

𝑝1𝑝2 … 𝑝𝑚𝑃 + 𝑞1𝑞2 … 𝑞𝑚𝑄+𝑟1𝑟2 … 𝑟𝑚𝑅

Prob(Negative|words) =
𝑞1𝑞2 … 𝑞𝑚𝑄

𝑝1𝑝2 … 𝑝𝑚𝑃 + 𝑞1𝑞2 … 𝑞𝑚𝑄+𝑟1𝑟2 … 𝑟𝑚𝑅

Prob(Neutral|words) =
 𝑟1𝑟2 … 𝑟𝑚𝑅

𝑝1𝑝2 … 𝑝𝑚𝑃 + 𝑞1𝑞2 … 𝑞𝑚𝑄+𝑟1𝑟2 … 𝑟𝑚𝑅

To provide a simple example of these equations, suppose that there

are 10 observations in the training set and only two words. Table 8.1
shows whether a particular word is in an observation (1 indicates that
it is in the observation and 0 indicates that it is not.

Table 8.1 Example of a situation where there are 10 opinions in the
training set and two words. 1 indicates that a word is present while 0
indicates that it is not present.

Opinion 1 2 3 4 5 6 7 8 9 10
Word 1 1 1 1 0 0 0 0 0 0 1
Word 2 0 0 1 1 1 1 0 1 0 0
Label Pos Pos Pos Pos Neg Neg Neg Neut Neut Neut

Consider an opinion that contains word 1 but not word 2. What is

the probability that it is favorable? In this case, p1 = 3/4 = 0.75 (because
three of the four positive observations in the training set contain word
1) and p2 = 2/4 = 0.5 (because two of the four positive observations do
not contain word 2). Similarly, q1 = 0, q2 = 0.33, r1 = 0.33, and r2 = 0.67.
The unconditional probability of a positive, negative, and neutral opin-
ion are 0.4, 0.3, and 0.3, respectively. The equations given above show
that the conditional probability that the opinion under consideration is
positive is:

0.75 × 0.50 × 0.4

0.75 × 0.50 × 0.4 + 0 × 0.33 × 0.3 + 0.33 × 0.67 × 0.3
= 0.69

Natural Language Processing 175

The conditional probability that it is negative is
0 × 0.33 × 0.3

0.75 × 0.50 × 0.4 + 0 × 0.33 × 0.3 + 0.33 × 0.67 × 0.3
= 0

The conditional probability that it is neutral is

0.33 × 0.67 × 0.3

0.75 × 0.50 × 0.4 + 0 × 0.33 × 0.3 + 0.33 × 0.67 × 0.3
= 0.31

The performance of the model can be assessed with a test set.

Our baby example illustrates one problem with the naïve Bayes clas-
sifier. There is a chance that a particular word, j, appears in the opinion
under consideration but does not appear in any of the training set ob-
servations that have a particular label. The probability of the opinion
having that label is then zero. In our example, word 1 appears in the
opinion under consideration but does not appear at all in the observa-
tions of the training set that are labeled negative. Hence q1 =0 and the
probability of the opinion being negative is bound to be calculated as
zero. This would be the case even if the opinion contained many other
words that were present in observations of the training set that were
labeled negative. All other negative words have no weight if one partic-
ular word is not found in the negative training set observations.

Assigning a zero conditional probability may be too extreme. A way
of making the zero probabilities slightly positive, so that a more reason-
able result is obtained, is known as Laplace smoothing. In this case we
can imagine adding two new observations for each of the three classes
in such a way that each word is present in one of the two observations
and not present in the other. This involves adding a total of six observa-
tions of which two are positive, two are negative and two are neutral.
The unconditional of positive, negative and neutral opinions become
6/16, 5/16, and 5/16 instead of 4/10, 3/10, and 3/10. Furthermore, p1
and p2 become 4/6 and 3/6 instead of 3/4 and 2/4, respectively; q1 and
q2 become 1/5 and 2/5 instead of 0/3 and 1/3, respectively; r1 and r2
become 2/5 and 3/5 instead of 1/3 and 2/3, respectively.

The new probability of that the opinion is positive is

0.667 × 0.5 × 0.375

0.667 × 0.5 × 0.375 + 0.2 × 0.4 × 0.3125 + 0.4 × 0.6 × 0.3125
= 0.556

The probability that it is negative is

176 Chapter 8

0.2 × 0.4 × 0.3125

0.667 × 0.5 × 0.375 + 0.2 × 0.4 × 0.3125 + 0.4 × 0.6 × 0.3125
= 0.111

The probability that it is neutral is

0.4 × 0.6 × 0.3125

0.667 × 0.5 × 0.375 + 0.2 × 0.4 × 0.3125 + 0.4 × 0.6 × 0.3125
= 0.333

In this simple example, the impact of Laplace smoothing on the proba-
bilities is quite large. As the data set become bigger, its impact declines.

8.5 Application of Other Algorithms

The naïve Bayes classifier has the advantage that it is easy to imple-
ment and very fast. However, the independence assumption is imper-
fect because some words often occur together. For example, a common-
ly occurring phrase in opinions might be “easy to use”. The words
“easy” and “use” would then have a joint probability of occurring in a
positive opinion that is much greater than the product of “easy” occur-
ring and “use” occurring.

Other classification algorithms that have been described in this book
are logistic regression, decision trees, SVM, and neural networks. When
they are used for sentiment analysis, the set up is similar to that for the
examples given earlier in the book. The features (i.e., the words in the
vocabulary used for classification) have values of either 0 or 1 with 1
indicating that the word is present and 0 indicating that it is not pre-
sent. We divide the available data into a training set and a test set. (If
several different models are being compared a validation set is also a
good idea as discussed in Chapter 1.) We use the training set (and pos-
sibly a validation set) to develop a classification model. The test data
evaluates the accuracy of the model.

Consider first SVM. Unlike the other algorithms, this merely classi-
fies opinions. It does not provide probabilities. In this respect, it is simi-
lar to the approaches suggested in Section 8.3. However, it is potentially
superior to those approaches because it can detect that some words are
more positive (negative) than others.

The SVM method described in Chapter 5 can be extended so that
there are more than two classes. This involves the estimation of the po-
sitions of multiple hyperplanes rather than just one. Unlike logistic re-
gression, the SVM algorithm has the advantage that it can be used even

Natural Language Processing 177

when the number of features (i.e., words in the vocabulary) is greater
than the number of observations in the training set.

Logistic regression is designed to accommodate two classes but
there are ways of extending it to accommodate more than two classes.
It has the advantage over SVM that it provides probabilities for the clas-
ses and has the advantage over naïve Bayes that it does not make the
independence assumption.

Decision trees and neural networks can be used to handle multiple
classes. In Section 3.9 we introduced a maximum likelihood objective
function when there are only two classes. This can be generalized to
more than two classes. If Qi is the probability that we predict that ob-
servation i from a labeled set will fall into its correct class, we want to
maximize

∑ ln (𝑄𝑖)

𝑖

The performance of a chosen algorithm can be assessed using measures
similar to those presented in Section 3.11.

8.6 Information Retrieval

We now leave sentiment analysis to consider the application of NLP

to information retrieval. This is important for search engines and it can
also be important for businesses that want quick access to a library of
documents that are stored electronically.

When words are input to a search engine by a user, how does it de-
cide the most relevant documents to present to the user? Two measures
that are commonly used are term frequency (TF) and inverse document
frequency (IDF). The TF for a document and a word is defined as

Number of times the word appears in the document

Number of words in the document

The IDF for a word is defined as

log (
𝑁

𝑛
)

178 Chapter 8

where N is the total number of documents and n is the number of doc-
uments containing the word.6 The TF-IDF is formed by multiplying TF
and IDF and is a score for a particular word in a particular document.

Consider a corporate search engine where there are 10,000 docu-
ments. To ensure fast information retrieval, the documents are pre-
processed and word counts are calculated. Suppose we input “the travel
policy” into the search engine. The engine will calculate the TF-IDF for
each of the words: “the”, “travel”, and “policy”. The word “the” will have
a relatively high TF for each document but its IDF will be zero because it
will appear in every document so that N = n. Suppose that the word
“travel” appears in 10% of the documents. Its IDF is

log (10) = 3.32

(assuming that the logarithm is calculated using base 2). The TF-IDF of
the word “travel” is calculated for each document by multiplying this by
the proportion of words that are “travel” in the document. (For 90% of
the documents this percentage is zero and so the TF-IDF is zero.) The
word “policy” is handled similarly.

For each document, we can calculate a score as

TF-IDF(“the”) + TF-IDF (“travel”) + TF-IDF (“policy”)

The documents are ranked by their score. The one with the highest

score will be presented to the user first; the one will the next highest
score will be presented second; and so on. Note that the word “the”
plays no role in determining which documents are returned. Also, if a
document contains neither “travel” nor “policy” it will have a score of
zero. Interestingly, with this simple information retrieval algorithm, the
order of the words input by the user makes no difference.

8.7 Other NLP Applications

There are many different NLP applications that have not been dis-

cussed in this chapter. In this section we briefly review a few of them.
If we give a machine two different words such as “many” and “nu-

merous”, how can it tell that they have a similar meaning? One way is by

6 Logarithms are usually calculated using the base 2 in computer science. If another
base is used all the IDFs are just multiplied by a constant and results are not affect-
ed.

Natural Language Processing 179

looking at what other words they tend to be used with.7 We could for
example, look at a large number of documents and ask the question: if
word X is in the document, what is the probability of word Y being
close? By “close” we might mean that word Y has to be within five
words of word X.

If there are 10,000 words in the vocabulary being used, this could
lead to a 10,000 by 10,000 table showing the probability of any one
word being close to any other word in a document. We would expect
the rows for two words that have similar meanings to be similar to each
other. It turns out that the information in such a table can be summa-
rized by a rather smaller table that is 10,000 by 300.8 (The procedure
determining the smaller table is similar to autoencoding which was dis-
cussed in Chapter 6.) The meaning of words can therefore be repre-
sented by what are termed word vectors with 300 entries. This is known
as word embedding. It turns out that these word vectors have nice addi-
tion and subtraction properties. For example, it is approximately true
that the following relationship holds between vector representations:

king – man + woman = queen

Another application of NLP is to word sequences. It asks the ques-

tion: What is the probability of a particular word sequence such as “I
will give you the answer to the question later today” occurring in text?
Clearly it is more likely than a sequence where the words have been
jumbled such as “I you give will the answer later to the question today.”
This has important applications in

 translating from one language to another,
 speech recognition
 using NLP to summarize texts
 the conversion of speech to text.

One idea for estimating the probability of a word sequence is to see

how often the text appears in a large number of documents. However,
this is infeasible. The chance of a sequence of words such as the one just
mentioned appearing in even millions of pages of text is virtually zero.
What we have to do in practice is break the sentence down into subse-

7 This was suggested by J.R. Firth in 1957, who is known for his famous quotation:
“You shall know a word by the company it keeps.”
8 Tables which have 50, 100, or 200 columns instead of 300 are sometimes used.

180 Chapter 8

quences of words. For example, we might consider the probability of
occurrence of “I will”, “will give”, “give you”, “you the”, etc.

Translating from one language top another is a very challenging NLP
application. There are a number of approaches. Google’s GNMT system,
which was mentioned in Chapter 1, uses a long short-term memory re-
current neural network (see Section 6.8). This proved to be a big im-
provement over its previous system which involved translating on a
phrase-by-phrase basis. The phrase-by-phrase system was in turn an
improvement over a previous word-by-word translation approach.

Summary

Natural language processing (NLP) involves translating words into
numbers so that they can be analyzed. One important application of
NLP is to sentiment analysis. This is concerned with determining the
nature of opinions such as those in reviews and tweets. The opinions
can be classified as positive or negative, with neutral being a possible
third category. Alternatively, they can be expressed on a numerical
scale (e.g. 1 to 5).

One of the most challenging aspects of sentiment analysis is obtain-
ing relevant labeled opinions that can be used for training a model and
testing it. Sometimes publicly available data (e.g., from movie reviews)
can be used. When this is not appropriate it is necessary to collect opin-
ions have that have been made in the past and undertake the laborious
task of classifying them manually.

Opinions must be processed before they can be used in a model. This
involves such tasks as separating out the words, eliminating punctua-
tion, changing upper case letters to lower case, removing commonly
occurring words, and removing words that are very rare. The result is a
vocabulary of words that will be used for classification.

Bag-of-words models are commonly used for sentiment analysis.
The models classifying an opinion depend on whether or not each word
in the vocabulary is present in the opinion. Among the machine learning
models that can be used are the naïve Bayes classifier, SVM, logistic re-
gression, decision trees, and neural networks.

Search engines are an interesting application of NLP. The task is to
choose the most relevant documents from a large number of possibili-
ties from key words input by the user. Important statistics are the fre-
quency with which a particular key word appears in each document and
the proportion of all documents in which the word appears.

Natural Language Processing 181

SHORT CONCEPT QUESTIONS

8.1 What is meant by “sentiment analysis”?
8.2 What are the alternative ways of creating labels for text in a

sentiment analysis?
8.3 List five ways in which text can be pre-processed for an NLP

application.
8.4 What is the difference between stemming and lemmatization?
8.5 What is a bag-of-words model?
8.6 Why do negative words such as “not” cause a problem in a

bag-of-words model?
8.7 What assumption is made when the naïve Bayes classifier is

used in sentiment analysis?
8.8 Explain what is meant by a “trigram.”
8.9 Give one advantage of logistic regression over (a) SVM and (b)

the naïve Bayes classifier.
8.10 What problem is Laplace smoothing designed to deal with?
8.11 Explain how TF and IDF are used in information retrieval.
8.12 What is a word vector?

EXERCISES

8.13 Suppose that there are three words in a vocabulary and we

wish to classify an opinion that contains the first two words,
but not the third, as positive or negative using the naïve Bayes
classifier. The training set is as follows (1 indicates that the
opinion contains the word, 0 indicates that it does not):

Opinion 1 2 3 4 5 6 7 8 9 10
Word 1 1 1 1 0 0 0 0 1 1 1
Word 2 0 0 1 1 1 0 0 1 0 0
Word 3 0 0 1 1 0 0 0 0 1 0
Label Pos Pos Pos Pos Neg Neg Pos Pos Neg Neg

 Estimate the probability that the opinion under consideration

is (a) positive and (b) negative.
8.14 Download 1000 positive and 1000 negative reviews from

http://www.cs.cornell.edu/people/pabo/movie-review-data/

http://www.cs.cornell.edu/people/pabo/movie-review-data/

182 Chapter 8

 and polarity data set v2.0. Using the naïve Bayes classifier and
logistic regression to develop a classification model for the
movies.

183

Chapter 9

Model Interpretability

Supervised learning models produce predictions, but they do not ex-
plain their predictions to users. In some cases, this is not important. For
example, when a search engine predicts that a particular document will
be what the user wants, understanding the underlying model is not im-
portant and there is a low cost to the user when the model makes a mis-
take. But, in many other situations, understanding how predictions are
made is desirable because mistakes are costly and confidence in the
model is important. As machine learning has become more widely used,
researchers have started to devote a great deal of effort to model inter-
pretability issues.1

Consider the situation in Section 3.11 where machine learning is be-
ing used to accept or reject loan applications. If an applicant for a loan is
rejected and asks the reason, it is not likely to be advisable for a bank
representative to say: “The algorithm rejected you. Sorry I do not have
any more information.” The decision made by the algorithm has a po-
tentially high cost to the would-be borrower and the bank’s reputation

1 A book providing an excellent discussion of model interpretability is C. Molnar,
Interpretable Machine Learning, 2020, https://christophm.github.io/interpretable-
ml-book/.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

184 Chapter 9

is likely to suffer if the representative blames an algorithm for lending
decisions.

As another example, we can consider the predictions for the price of
a house in Iowa made in Section 3.8. The person making use of a pre-
diction might be a seller of the house, a buyer of the house, or a real es-
tate agent. In all cases, mistakes are liable to be costly and an individual
relying on the prediction is likely to want to know how it was obtained.

Model interpretability has been defined as the degree to which a
human being can understand a decision made by a model.2 One model is
more interpretable than another if a human being can more easily un-
derstand its output.

Human beings are naturally curious about the predictions made by
machine learning models and want to learn from them. In some cases,
there may be biases in the model (e.g., involving race or gender) that
are unacceptable. Understanding these biases can lead to the model
being changed or used in a different way. Sometimes understanding an
unfavorable prediction can lead to a decision to take some action that
changes a feature so that the outcome being predicted is improved.

It is interesting to note that legislation can require model interpret-
ability. The General Data Protection Regulation in the European Union,
which is discussed in Chapter 11, includes a “right to explanation” with
regard to machine learning algorithms applied to the data of citizens of
the European Union. Specifically, individuals have the right to “mean-
ingful information about the logic involved in, as well as the significance
and the envisaged consequences of, such processing for the data sub-
ject.”

Sometimes, understanding a model can lead one to understand the
model’s limitations. As a simple example of this, consider image recog-
nition software that distinguishes between polar bears and dogs. It
might be found that the model is making predictions by looking at the
background (ice vs. grass/trees) rather than the characteristics of the
animals. Understanding this clearly indicates a limitation of the model.

There is an amusing story concerning a German horse, named Hans,
who in the early 20th century appeared to be intelligent and able to
solve mathematical problems (for example, the horse could add, sub-
tract, multiply, divide, and answer questions such as: “if the ninth day of
the month is a Wednesday what day of the month is the following Fri-
day?”). Hans indicated answers by stomping his hoof a number of times

2 See T. Miller “Explanation in artificial intelligence: Insights from the social scienc-
es.” (2017) arXiv: 1706.07269.

Model Interpretability 185

and received a reward when the answer was correct. For some time, the
horse was assumed to be intelligent and researchers studied the inter-
esting phenomenon of a horse that could hear mathematical questions
and correctly answer them. Eventually, it was found that the horse’s
real expertise was in reading the expressions on the face of the person
asking the questions. Subtle changes in expression led the horse to
know when to stop stomping. He did not actually have any mathemati-
cal intelligence. The horse can be considered analogous to a machine
learning algorithm. Humans at first incorrectly interpreted why Hans
gave the answer he did.

The task of understanding a model can be distinguished from the
task of understanding a particular prediction made by the model. It is
important for companies to have some understanding of a machine
learning model so that they can have confidence in the results and know
when the environment is such that the model is not applicable. It is also
important that particular predictions are explainable.

In this chapter, we will distinguish between models that are intrinsi-
cally interpretable (white boxes) and models whose structures do not
permit easy interpretation (black boxes). The k-nearest neighbors algo-
rithm (see Section 3.12) is clearly in the first category. It is not difficult
for someone to understand how the model works and any particular
prediction is easily explained. It is essentially a “prediction-by-analogy”
model and corresponds to how many human beings make predictions.
(For example, a real estate agent in providing advice on the value of a
house is likely to use the prices obtained for similar houses that have
sold recently.)

As mentioned in Chapter 4, decision trees are fairly easy to explain
because they also correspond to the way humans sometimes make pre-
dictions. (It is easier for a human to consider one feature at a time ra-
ther than all together.) Linear regression is also in the white-box cate-
gory because the weights that are derived have a simple interpretation.

Models such as neural networks, SVM, and ensemble models such as
random forests are in the black-box category. There is no easy way for
us to understand how the models work or why the models make a par-
ticular prediction.

9.1 Linear Regression

 Linear regression is fairly easy to interpret, which in part explains

why it is so popular. The model is:

186 Chapter 9

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚

where Y is the prediction of the target and Xj (1 ≤ j ≤ m) are the features.
The weight, bj, can be interpreted as the sensitivity of the prediction to
the value of the feature j. If the value of feature j increases by an amount
u with all other features remaining the same, the value of the target in-
creases by bju. In the case of categorical features that are 1 or 0, the
weight gives the impact on a prediction of the target of changing the
category of the feature when all other features are kept the same.

The bias, a, is a little more difficult to interpret. It is the value of the
target if all the feature values are zero. However, feature values of zero
make no sense in many situations. (For example, no houses have a lot
size of zero or a first-floor square footage of zero.) For interpretation
purposes, it is a good idea to redefine features so that the mean is sub-
tracted. The value of the jth feature then becomes 𝑋𝑗 − 𝑋̅𝑗 rather than

𝑋𝑗 , where 𝑋̅𝑗 is the mean of the feature value calculated from all items in

the training set.3 The regression model becomes:

𝑌 = 𝑎∗ + 𝑏1(𝑋1 − 𝑋̅1) + 𝑏2(𝑋2 − 𝑋̅2) + ⋯ + 𝑏𝑚(𝑋𝑚 − 𝑋̅𝑚) (9.1)

The new bias a* is

𝑎∗ = 𝑎 + 𝑏1𝑋̅1 + 𝑏2𝑋̅2 + ⋯ + 𝑏𝑚𝑋̅𝑚

This bias does have an easy interpretation. It is the value of the tar-
get when all features have their average values. In the case of linear
regression, it is also the average value of the target.

For a more sophistical interpretation of a linear regression model we
can use the statistics mentioned in Section 3.2 that are calculated when
linear regression models are implemented. R-squared is an indication of
the overall performance of the model and therefore how much it can be
relied upon. The t-statistics for the weights can be used to provide con-
fidence limits for the sensitivities. Suppose bj is 10 with a t-statistic of 5.
Because the t-statistic is the weight divided by its standard error, the
standard error is 2. We know that the best estimate of the effect of a
change u in the value of the jth feature on the value of the target is 10u
but it could be as low as 6u or as high as 14u.4

3 We could use Z-score scaling for the features so that, in addition to subtracting the
mean, we divide by the standard deviation. However, this may make the weights
more difficult to interpret.
4 The value is within two standard deviations of the mean about 95% of the time
when the data set is large.

Model Interpretability 187

So far we have focused on how the model can be understood. We
now suppose that we want to explain a particular prediction. A natural
approach is to use equation (9.1). The impact of feature j on a predic-
tion, when the average value of the feature is used as a benchmark is

𝑏𝑗(𝑋𝑗 − 𝑋̅𝑗)

As the feature’s value, 𝑋𝑗 , moves further away from its average value of

𝑋̅𝑗 , its impact on the prediction made for the target increases. An analyst

can take account of the standard error of bj to produce a range of possi-
ble values for the impact of feature j on a particular prediction.

Model interpretability is an important reason for using regulariza-
tion methods such as Ridge and Lasso. Consider the Iowa house price
example in Chapter 3. The regression with 47 features in Table 3.6 does
not include any regularization, but it happens to generalize quite well to
the validation set with the result that the predictions it produces are
quite reasonable.5 However, the negative weights in the model (e.g., for
number of bedrooms), which arise from correlations between features,
would be difficult to explain. (Indeed, the model might be dismissed by
some users as being ridiculous!) The regularized model in Table 3.7,
which is produced using Lasso, is much easier to explain.6

Table 9.1 shows how results might be tabulated when the model in
Table 3.7 is used to price a house. For completeness, two features ap-
pear in Table 9.1 that were not in Table 3.7. These are wood deck (sq.
ft.) and open porch (sq. ft.). They had very small (but non-zero) weights
of 0.001 and 0.002, respectively in the Python Lasso implementation on
scaled data when =0.1.

The house of interest is assumed to have a lot area of 15,000 square
feet, an overall quality of 6, and so on. To improve interpretability, the
Z-score scaling used for Table 3.7 has been reversed in Table 9.1. (It will
be recalled that scaling was necessary for Lasso.) This means that the
feature weights in Table 3.7 are divided by the standard deviation of the
feature and multiplied by the standard deviation of the house price to
get the feature weights in Table 9.1.

The table shows that the average lot area for the houses in the train-
ing set is 10,249 square feet, compared with 15,000 square feet for the

5 Note that it is not always the case that a model without any regularization general-
izes well.
6 Lasso regularization is also particularly useful from the perspective of model in-
terpretability because it reduces the number of features making it easier for a user
to understand the model.

188 Chapter 9

house of interest. The weight for lot area is 0.3795 ($ per square foot).
This means that the contribution of lot area to the value of the house is
$0.3795 × (15,000 − 10,249) or $1,803.

Table 9.1 Impact of different features on the value of a particular
house in Iowa when the model in Table 3.7 is used. See Excel file.

Feature House
value

Average
value

Feature
weight

Contrib-
ution ($)

Lot area (sq. ft.) 15,000 10,249 0.3795 +1,803
Overall quality (1 to 10) 6.0 6.1 16,695 −1,669
Year built 1990 1972 134.4 +2,432
Year remodeled 1990 1985 241.2 +1,225
Finished base (sq. ft.) 1,200 444.0 20.42 +15,437
Total basement (sq. ft.) 1,300 1,057 19.08 +4,630
First floor (sq. ft.) 1,400 1,159 6.666 +1,609
Living area (sq. ft.) 2,000 1,503 46.79 +23,273
Number of fireplaces 0 0.6089 2,452 −1,493
Parking spaces 2 1.774 2,857 +646
Size of garage (sq. ft.) 600 474.8 24.42 +3,055
Wood deck (sq. ft.) 0 93.62 0.6364 −60
Open porch (sq. ft.) 0 46.59 2.562 −119
Neighborhood 1 0 0.02611 6,395 −167
Neighborhood 2 0 0.05944 27,523 −1,636
Neighborhood 3 0 0.01611 10,311 −166
Basement quality 5 3.497 1,820 +2,734
Total +51,532

The model predicts that the price of the house of interest (with the

feature values in the second column of Table 9.1) is $232,349. The value
of an “average house” with the feature values in the third column of Ta-
ble 9.1 is $180,817. This house is therefore worth $51,532 more than
the average house. The final column of Table 19.1 shows the contribu-
tion of each feature to the difference between the value of the house and
the value of an average house. (The calculation is shown for the first
feature, lot area, above.) A key point is that for a linear model the sum of
these contributions equals the difference. (As we discuss later non-
linear models do not have this property.)

The table shows that, for the particular house being considered, the
finished basement and living area add most to the value. Many other
results can be deduced from the table. For example, the table shows
that, if the house had been in neighborhood 2 (the most expensive

Model Interpretability 189

neighborhood), the house would have been worth an extra $27,523.
(This is because the feature value for neighborhood 2 would be 1 rather
than 0.)

It should be noted that the model in Table 9.1, although much better
than the original model in Table 3.6, is by no means perfect. It still has
some features that are not independent of each other. For example, total
basement (sq. ft.) and first floor (sq. ft.) are correlated. When one is high
(low), the other is likely to be high (low).7 In considering the effect of
different features, it does not really make sense to consider the effect of
the total basement (sq. ft.) increasing without first floor (sq. ft.) also
increasing. There is no simple answer to this problem. We could consid-
er grouping two or more features together when considering changes.
Sometimes a principal components analysis or an autoencoder can sug-
gest a way to redefine the features so that they are independent (or
nearly independent).

9.2 Logistic Regression

The prediction from logistic regression is the probability of a posi-

tive outcome, not a value. As explained in Section 3.9,

Prob (Positive Outcome) =
1

1 + exp[− (𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚)]

where Xj is the value of feature j, bj is its weight and a is the bias. It fol-
lows from this that

Prob (Negative Outcome) =
exp[− (𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚)]

1 + exp[− (𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚)]

We can calculate the sensitivities of these probabilities to the value
of a feature analytically. For example, using a little calculus, it can be
shown that when feature j increases by a small amount u, the probabil-
ity of a positive outcome increases by

exp[− (𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚)]

{1 + exp [− (𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚)]}2
𝑏𝑗𝑢

This is

7 The correlation between the feature values is about 0.79.

190 Chapter 9

Prob (Positive Outcome) × Prob (Negative Outcome) × 𝑏𝑗𝑢 (9.2)

Unfortunately, this is only accurate for small values of u because the
relationship between probability and feature values is non-linear.

An approach to overcoming the non-linearity problem is to work in
terms of odds. If the probability of an event is p, the odds against it hap-
pening are (1 − p)/p to 1. “Odds against” tend to be used when the event
has a probability less than 0.5. For example, the odds against the throw
of a dice providing a six is 5 to 1. This would be stated as “5 to 1 against”
and means that a fair bet of $1 should (a) provide a payoff of $5 and re-
turn the $1 wager if a six is thrown and (b) lead to a loss of the $1 wager
in other circumstances.

The odds in favor of an event (often used when the event has a prob-
ability greater than 0.5) are p/(1 − p) to 1. Thus, the odds in favor of a
dice giving 1, 2, 3, or 4 is 2 to 1. This would be stated as “2 to 1 on” and
indicates that a fair bet of $2 will return $1 plus the $2 wager or noth-
ing.

The logistic regression equations show that the odds of a positive re-
sult are

exp[− (𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚)] to 1 against

or

exp(𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚) to 1 on

This shows that the natural logarithm of odds are linear in the features:

ln(odds against) = − (𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚)

ln(odd on) = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚

As in the case of linear regression, it makes sense to redefine fea-
tures so that the value of the jth feature is 𝑋𝑗 − 𝑋̅𝑗 rather than 𝑋𝑗 where

𝑋̅𝑗 is the mean of the feature value calculated from all items in the train-

ing set. We can analyze the logarithm of odds in the same way that pre-
dictions are analyzed in linear regression. When the analog of Table 9.1
is produced, we will be able to see the contribution of each feature’s
deviation from its average to the logarithm of the odds.

Working with the logarithm of odds is a little artificial. Instead, we
can note that the percentage effect on “odds against” of increasing the
value of a feature by u is exp(−𝑏𝑗𝑢) − 1. Similarly, the percentage effect

on “odds on” of increasing the value of a feature by u is exp(𝑏𝑗𝑢) − 1.

When the percentage effects from a number of different features are
multiplied together we get the total percentage effect.

Model Interpretability 191

 Odds can be converted to probabilities:

Probability =
1

1 + odds against

and

Probability =
odds on

1 + odds on

We can illustrate these results with the model in Section 3.11. The
probability of a loan not defaulting (which we defined as the positive
result) is

1

1 + exp[−(−6.5645 + 0.1395X1 + 0.004107X2 − 0.001123X3 + 0.01125𝑋4)]

(9.3)

where X1 is a categorical variable indicating home ownership, X2 is in-
come in ($’000s), X3 is debt to income ratio, and X4 is credit score. Con-
sider someone who does not own a home (X1 = 0) with an income of
$60,000, a debt to income ratio of 5, and a credit score of 670. Substitut-
ing these values into the formula, the probability that the loan will not
default is estimated as 0.7711. Consider what happens if the credit
score increases by 10 from 670 to 680. From equation (9.2), the in-
crease in this probability can be estimated as

0.7711 × 0.2289 × 0.01125 × 10 = 0.01986

This is an approximate answer because probability is a non-linear func-
tion of the features. Substituting into equation (9.3) shows that increas-
ing X4 to 680 changes the probability to 0.7903 so the exact increase in
probability given by the model is 0.7903 − 0.7711 or 0.01925.

The odds of a positive outcome are 3.369 to 1 on because 3.369 =
0.7711/(1 − 0.7711). We know that, when the credit score increases by
10, ln(odds on) increases by 0.01125 × 10 = 0.1125 (from 1.2145 to
1.3270). Alternatively, the percentage increase in the odds on could be
calculated as exp(0.01125 × 10) − 1 or 11.91%. Either of these results
can be used to calculate the new odds on and if desired this can be con-
verted to a probability.

The same analysis can be applied to categorical features. Suppose
that, in our example, we wonder how much better the lender’s position
would be if the borrower owned a house. The percentage increase in
the odds on that the loan will not default is, from the coefficient of X1 in

192 Chapter 9

equation (9.3), exp(0.1395) − 1 or 14.97%. This means that the odds
increase from 3.369 to 1 on to 3.873 to 1 on. The new probability is
3.873 (1 + 3.873)⁄ or 0.7948.

9.3 Black-box Models

For a black-box model, the measures needed to understand the

model must usually be calculated numerically.8 The effect on a predic-
tion of making a change to a feature value in a particular situation can
be calculated by re-running the model. For the linear model in Section
9.1, this is independent of the values of the features, but for non-linear
models it depends on the feature values.

Analogously to what we did in Section 9.1, we can provide a measure
of the contribution of each feature in a particular situation by calculat-
ing the change in the prediction when the feature is changed from its
average value to its actual value with all other features remaining at
their average values. In Table 9.1, the sum of the contributions of dif-
ferent features equals the difference between the actual prediction and
the average prediction. As a result, the difference between the predic-
tion and one based on average feature values is neatly divided into a
number of components. For a non-linear model, calculating contribu-
tions using the approach in Table 9.1 does not have this simple property
and we must use a more complicated calculation, which will be ex-
plained in Section 9.4.

A key point about black-box models is that the relationship between
the prediction and a feature’s value may not be linear. It may not even
be monotonic. For example, a store could find that one of the features
affecting its sales is temperature and that the average effect of tempera-
ture has the form shown in Figure 9.1. This shows that, when the tem-
perature is very low or very high, the volume of sales declines.

In a particular situation, the impact of feature j can be determined
changing feature j while keeping all features except feature j fixed. An
extension of this idea is where two features are considered simultane-
ously so that a three-dimensional plot is obtained.

To provide an overall understanding of the role of feature j in a
model (as opposed to its role when other features have particular val-
ues), we can calculate many predictions where

8 But note that in the case of neural networks, partial derivatives can be calculated
by working forward through the network and using the chain rule.

Model Interpretability 193

 Feature j has a particular value xj.
 The values of the other feature are chosen randomly.

By averaging across all these predictions, we obtain the expected pre-
diction conditional on feature j equaling xj. By considering a number of
different values for xj we are then able to plot the expected prediction as
a function of xj. This is known as a partial dependence plot. (In the case
of linear regression, it is a straight line.)

Figure 9.1 Possible effect of temperature on a store’s sales

9.4 Shapley Values

Linear regression models have the property, illustrated in Table 9.1,

that a simple calculation leads to the result that the sum of the contribu-
tions of the features to the change in a prediction equals the change.
Non-linear models, as already mentioned, do not have this convenient
property. However, what are known as Shapley values show that a
more complicated calculation of the contributions of features leads to a
result where the property does hold. Shapley values are based on the
work of Lloyd Shapley in the early 1950s concerned with game theory.9

We can illustrate the nature of the calculations with a simple exam-
ple. Suppose that there are three features. When the features have their

9 See L. S. Shapley, “A value for n-person games.” Rand Corporation, 1952.

Temperature

Sales

194 Chapter 9

average values a black-box model gives a prediction of 100. In a situa-
tion, which we will refer to as “current”, the features have values that
are different from average and the black-box model leads to a predic-
tion of 140. What is the contribution of the features to the 40 in-
crease?

To investigate this, we re-run the model to calculate the predic-
tion for every situation where some features have their average val-
ues and some have their current values. We suppose that the results
are as indicated in Table 9.2.

We next consider the sequence in which the features move from
their average values to their current values. Denote XYZ by the situation
where feature X changes first, then feature Y changes, and then feature
Z changes. There are six possibilities in our example: 123, 132, 213, 231,
312, and 321. In the first two cases (123 and 132), feature 1 is changed
from average to current while the other two features stay at their aver-
age values. From the first and fifth row of Table 9.2, the contribution of
feature 1 is 110−100 = 10 in this situation. In the third case (213), fea-
ture 1 is changed after feature 2 has been changed, but before feature 3
is changed. From rows 3 and 7 of Table 9.2, the contribution of feature 1
is 137 −125 =12 in this situation. Other similar calculations are shown
in Table 9.3. It can be seen that the total average contribution of the fea-
tures (= 10 + 18.5 + 11.5) equals the total increase, 40, that has to be
explained. This is always the case.

Table 9.2 Results from running model with different combinations of
average and current values

Feature 1
Value

Feature 2
Value

Feature 3
Value

Prediction

Average Average Average 100
Average Average Current 120
Average Current Average 125
Average Current Current 130
Current Average Average 110
Current Average Current 128
Current Current Average 137
Current Current Current 140

Model Interpretability 195

Table 9.3 Contribution of feature for different sequences in which fea-
tures are changed from the average value to the current value

Sequence Feature 1
Contribution

Feature 2
Contribution

Feature 3
Contribution

123 10 27 3
132 10 12 18
213 12 25 3
231 10 25 5
312 8 12 20
321 10 10 20

Average 10 18.5 11.5

This calculation of the contribution of the features using Shapley

values has nice properties. One is the property we have just illustrated
that the sum of the contributions equals the total change. Other attrac-
tive properties are

 If a feature never changes, the prediction its contribution is ze-

ro.
 If two features are symmetrical in that they affect the prediction

in the same way, they have the same contribution.
 For an ensemble model where predictions are the average of

predictions given by several underlying models, the Shapley
value is the average of the Shapley values for the underlying
models.

As the number of features increases, the number of calculations to
determine Shapley values increases quite fast making it computational-
ly expensive to use them.10 Shapley values can be used to explain why
any two predictions are different (i.e., the benchmark does not have to
be a prediction based on average feature values). However, they have a
limited ability to explain the workings of the model as a whole. Also,
interactions between features can cause unrealistic combinations of
feature values to be considered.11

10 When there are m features, there are m! sequences and 2𝑛 different contributions
to calculate.
11 All models have this problem. We explained in Section 9.1 that this happens in
Table 9.1. Changing total basement (sq. ft.) without changing first floor (sq. ft.) cre-
ates an unrealistic set of feature values.

196 Chapter 9

9.5 LIME

Local Interpretable Model-agnostic Explanations (LIME) are an al-

ternative approach to explaining the predictions made by black-box
models.12 LIME tries to understand a model’s prediction by creating a
simpler more interpretable model that works well for values of the fea-
tures that are close to those being considered.

The procedure is as follows:

 Perturb the current values of the features to create sample val-

ues for the features
 Run the black-box model to get predictions from the samples
 Train an easy-to-interpret model (e.g. linear regression or deci-

sion trees) using the samples and their predictions

Predictions in the region of interest can then be explained using the
new model. The samples can be weighted according to their closeness
to the current values of the features. The new model will often contain
less features than the original model (e.g., because it uses Lasso).

Summary

An important aspect of machine learning is interpretability. Some

models such as k-nearest neighbors, linear regression, and decision
trees are fairly easy to interpret. Logistic regression is not quite as
straightforward, but there is an analytic formula relating inputs to out-
puts and so any required property of the model can easily be derived.
Models such as neural networks are black boxes. There is no simple way
of understanding how outputs are related to inputs.

One question that can be asked of a model is “What happens if the
value of feature j is changed with all other features remaining the
same?” This is easy to answer in the case of linear regression. The
weight of feature j times the change in the value of the feature equals
the impact of the change on the prediction. This is true for both small

12 See M.T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you? Explaining the
predictions of any classifier.” Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining (2016).

Model Interpretability 197

and large changes and does not depend on current feature values. In the
case of logistic regression, it is sometimes easier to work in terms of
odds rather than probabilities when estimating the impact of feature-
value changes.

In black-box models, the relationship between a feature’s value and
predictions can be highly non-linear. To understand the relationship for
a particular prediction, an analyst can repeatedly run a model to inves-
tigate the effect of changing the value of the feature while keeping all
other feature values fixed. To provide a broader understanding of the
feature’s effect, the values of the other features can be randomized in
some way.

To understand why one set of feature values produces a different
prediction from another set of feature values, one can consider the con-
tribution of each feature separately. However, when the model is non-
linear the sum of the contributions does not equal the total difference
that is to be explained. Shapley values provide a way of overcoming this
problem so that the overall change in a prediction is exactly allocated to
the contributions of different features.

A recent idea in model interpretability is referred to as LIME. This
involves understanding how a model works when features have values
close to their current values. The approach is to perturb the current
values and re-run the model so that a new data set describing output
from the model in the region of interest is created. An interpretable
model such as linear regression or decision trees is then fitted to this
data set.

SHORT CONCEPT QUESTIONS

9.1 Which of the models introduced in this book are most difficult to
interpret?

9.2 In what ways is a linear model simpler to interpret than a non-
linear model?

9.3 How much is it worth to have an extra 5,000 square feet of back
yard in Iowa?

9.4 In logistic regression, what is the equation for the sensitivity of
the probability of a negative outcome to a very small change in
the feature value?

9.5 Explain what is meant by “odds against” and “odds on.” Why
might they be useful concepts for interpreting logistic regression
models?

198 Chapter 9

9.6 “Interactions between features create problems when the contri-
butions of features to the change in a prediction is calculated.”
Explain this statement.

9.7 Explain what a partial dependence plot is and how it is calculated.
9.8 What are the advantages of using Shapley values in model inter-

pretability?
9.9 Explain the LIME approach to model interpretability.
9.10 How many different sequences have to be considered when Shap-

ley values are calculated for four features?

EXERCISES

9.11 For the logistic regression model in Table 3.9, use Shapley values
to calculate the contribution of each feature to the probability of a
positive result for the person considered in Section 9.2 (no home,
income equals $60,000, debt-to-income ratio is 5, and a credit
score is 670). Use a person with average feature values as the
benchmark.

9.12 Use the LIME approach to calculate a local model for the person
considered in Section 9.2 (no home, income equals $60,000, debt-
to-income ratio is 5, and a credit score is 670)

199

Chapter 10

Applications in Finance

Until a few years ago, my research was almost exclusively concerned
with finance, in particular derivatives markets. It then became apparent
to me that machine learning was having a bigger and bigger impact on
finance and derivatives. I started to learn about machine learning and
this book is one of the results of that.

This chapter will give a flavor for some of the applications of machine
learning that are starting to revolutionize finance by describing two ap-
plications in detail. These applications are simplified versions of research
that I have been involved in. (They involve derivatives, but readers with
little knowledge of this area need not be concerned as the chapter pro-
vides the necessary background.) Data and Python code for the applica-
tions is at

www-2.rotman.utoronto.ca/~hull
The reader is encouraged to use this to explore the applications further.

The chapter concludes by summarizing a few of the many other ways
that machine learning is used in finance.

10.1 Derivatives

Most financial and other transactions involve the immediate, or al-

most immediate, exchange of an asset for cash. Derivative transactions

200 Chapter 10

are by their nature different. They involve two parties agreeing to an ex-
change in the future rather than immediately.

The exchange agreed to by the two parties in a derivative transaction
usually involves one or more financial assets. The value of the transaction
therefore depends on (or derives from) the value of these underlying fi-
nancial assets. Examples of underlying financial assets that are fre-
quently used in derivative transactions are stocks, portfolios of stocks,
commodities, and currencies.

An important and popular derivative is an option. This gives one side
the right (but not the obligation) to buy an asset from the other side, or
sell an asset to the other side, for a certain price at a certain future time.1
The price in the contract is known as the strike price.

The right to buy is termed a call option. An example of a call option is
where Party A obtains the right to buy a certain stock for $50 in six
months from Party B. The current price of the stock might be greater than
or less than $50. The option will be exercised if the stock price in six
months, ST, is greater than $50 for a gain equal to ST −50.2 Party A is re-
ferred to as having bought the call option or having a long position in the
call option. Party B is referred to as having sold the call option or having
a short position in the call option. Party A would pay an amount upfront
to Party B to acquire the option.

The right to sell is termed a put option. An example of a put option is
where Party A obtains the right to sell a stock for $50 in six months. (As
in the case of the call option, the current price of the stock might be more
or less than $50.) The option will be exercised if the stock price in six
months, ST, is less than $50 for a gain equal to 50−ST.3 Party A is referred
to as having bought the put option or having a long position in the put
option. Party B is referred to as having sold the put option or having a
short position in the put option. As in the case of a call option, Party A
would pay the cost of the option to Party B upfront.

Figure 10.1 shows the payoffs to the purchaser from call and put op-
tions as a function of the asset price at option maturity when the strike
price is $50. It can be seen that the payoff is fundamentally different from
investing in the stock itself for the life of the option. In the case of an in-
vestment in the stock, the gain from a certain increase in the price equals
the loss from the same decrease in price. In the case of an option this is

1 The options that we will consider throughout this chapter are all what are termed
European options. These can be exercised at only one future time.
2 Party A could monetize this gain by buying the stock under the terms of the option
and immediately selling it in the market.
3 Party A could monetize this gain by buying the stock in the market and immediately
selling it under the terms of the put option.

201 Applications in Finance

not so. There is a lack of symmetry. The payoff from favorable price
movements during the life of the option can be very high whereas that
from unfavorable movements is at worst zero. To put this another way,
the purchaser of an option cannot lose more than the price paid for it
while the possible gain can be substantial.

Figure 10.1 Payoff from (a) a call option to buy a stock for $50 and (b)
a put option to sell a stock for $50

(a) (b)

When the volatility of the price of the underlying asset is high, big
movements in the asset price are possible and the lack of symmetry just
mentioned is valuable to the option holder. When the volatility is low, the
lack symmetry is still present, but it is less valuable because big price
movements are less likely.

The price that has to be paid for an option by the buyer to the seller
therefore depends on an estimate of the volatility of the asset price. As
the volatility increases, the price increases. This dependence of option
prices on volatility is what makes the analysis of options and other deriv-
atives more complicated (and more interesting) than that of other sim-
pler instruments.

Define K as the strike price of an option and S as the price of the un-
derlying asset. When K < S, a call option is commonly referred to as in-
the-money because, if it were possible to exercise it immediately, there
would be a positive payoff. When K > S, a call option is similarly referred
to as out-of-the-money. For a put option, the reverse is true: when K < S,
a put option is out-of-the-money and when K > S, it is in-the money. The
extent to which an option is in- or out-of-the-money (i.e., the relative val-
ues of K and S) is referred to as the option’s moneyness.

0

10

20

30

40

50

0 20 40 60 80 100

Option
Payoff

Asset Price
0

10

20

30

40

50

0 20 40 60 80 100

Option
Payoff

Asset Price

202 Chapter 10

10.2 Delta

An important parameter in derivatives markets is delta. This is the

sensitivity of the value of a derivatives portfolio dependent on a particu-
lar underlying asset to the price of that asset. If a small increase in the
price of the underlying asset equal to S causes the value the portfolio to
increase by P, the delta of the portfolio is ∆𝑃/∆𝑆.

A portfolio with a delta of zero has the property that it is not sensitive
to small changes in the price of the underlying asset and is referred to as
delta-neutral. Traders usually try and make their portfolios delta-neutral,
or close to delta-neutral, each day. They can do this by trading the under-
lying asset. Suppose that the delta measured for a derivatives portfolio is
−4,000, indicating that a small increase, S, in the price of the underlying
asset will lead to a decrease in the value of the portfolio equal to 4,000 ×
∆𝑆. Taking a long position in 4,000 units of the asset will lead to a delta-
neutral portfolio. The gain (loss) on the derivatives is then offset by the
loss (gain) on the new position taken.

The most famous model for valuing options is the Black−Scholes−
Merton model, which we used to illustrate neural networks in Chapter 6.
This is a relationship between the price of the option and the following
variables.

 Asset price, S
 Strike price, K
 Risk-free interest rate, r
 Volatility, 
 Life of the option, T
 The income expected by the market on the asset. We will assume

that the underlying asset provides a constant yield (i.e., income
as a percent of its price is constant) and will denote this yield by
q

The Black−Scholes−Merton model assumes that the rate of return in

a short period of time, t, is normally distributed with a mean of t and

a standard deviation of σ√∆𝑡. (Magically, as can be seen from equation
(6.3), the mean return does not enter into the equation for the price of
the option.) The delta of call and put options are

Delta (call) = 𝑒−𝑞𝑇𝑁(𝑑1)

Delta (put) = 𝑒−𝑞𝑇[𝑁(𝑑1) − 1]

where

203 Applications in Finance

𝑑1 =
ln(𝑆 𝐾⁄) + (𝑟 − 𝑞 + 𝜎2 2⁄)𝑇

σ√𝑇

The delta of a long position in a call option and a put option as a func-

tion of S/K is shown in Figure 10.2. Suppose for simplicity that q = 0. For
a call option, delta is close to zero when it is deeply out of the money (S/K
considerably less than 1) and close to one when it is deeply in the money
(S/K considerably greater than one). For a put option, the pattern of del-
tas is similar except that, instead of ranging from 0 to 1, they range from
−1 to 0

In addition to using delta for hedging, traders also use delta to meas-
ure moneyness.4 We will do this in what follows. A call option with a
delta of 0.5 is referred to as at-the-money. When delta is greater than 0.5,
it is in-the-money and, when delta is less than 0.5, it is out-of-the-money.
Similarly, a put option with a delta of −0.5 is referred to as at-the-money,
one with a delta less than −0.5 is in-the-money, and one with a delta
greater than −0.5 is out-of-the-money.

Figure 10.2 Variation of delta with S/K when q = 0 for (a) a long position
in a call option and (b) a long position in a put option

(a) (b)

10.3 Volatility Surfaces

Of the six variables listed in the previous section that determine op-
tion prices in the Black−Scholes model, all except  are known. (The in-
come expected by the market on an asset can be estimated from futures

4 As mentioned earlier, a common definition of moneyness simply reflects whether
S > K or S < K. Delta is a more sophisticated measure preferred by traders.

0

0.2

0.4

0.6

0.8

1

0.5 0.7 0.9 1.1 1.3 1.5

D
el

ta

S/K

-1

-0.8

-0.6

-0.4

-0.2

0

0.5 0.7 0.9 1.1 1.3 1.5

D
el

ta

S/K

204 Chapter 10

or forward contracts.) Option traders therefore play a game where they
observe an option price in the market and then calculate from the
Black−Scholes−Merton model the value of that is consistent with the
price. This value of  is known as the option’s implied volatility.5 Very of-
ten option prices are quoted in terms of their implied volatilities.6 The
price of the option must then be obtained from the implied volatility by
substituting it into the Black−Scholes−Merton model, together with the
other known parameters.

The Black−Scholes−Merton model assumes that the volatility, , is
constant. From this, it follows that, if market participants used the Black-
Scholes−Merton model with the same volatility when pricing all options
on an asset, the implied volatilities calculated from the options would be
the same and equal to the volatility used. In practice, the Black−Scholes
−Merton model does not provide a perfect description of how traders
price options. Nevertheless, implied volatilities continue to be calculated
and quoted by market participants. At any given time, each option trad-
ing in the market has a price, and therefore an implied volatility, associ-
ated with it.

An important activity for traders is keeping track of implied volatili-
ties. The implied volatility of an option at any given time is a function of
two variables:

 its moneyness (which, as explained earlier, is measured as delta)
 its time to maturity, T.

The three-dimensional function relating implied volatility to delta and T
is referred to as the volatility surface. The volatility surface, estimated
from all options on the S&P 500 on two different dates, is shown in Figure
10.3.

10.4 Understanding Volatility Surface Movements

As illustrated in Figure 10.3, the volatility surface is highly non-linear.
The change in the volatility surface from one day to the next is also highly
non-linear. Understanding how the volatility surface moves is important
for a number of reasons:

5 The implied volatility for a call options with a certain strike price and maturity is
the same as that for a put option with the same strike price and time to maturity.
6 The key advantage of doing this is that, when the asset price changes, the implied
volatility often stays the same. When quotes are in terms of implied volatility they
are therefore more stable.

205 Applications in Finance

 It can help a trader hedge her exposure.7
 It can help a quant determine a stochastic volatility model re-

flecting how options are priced in the market.
 It can help a trader adjust implied volatilities in a market where

asset prices are changing fast.

A neural network is a natural tool for using empirical data to model vol-
atility surface movements.

Figure 10.3 Volatility surface observed for options on the S&P 500 on
(a) January 31, 2019 and (b) June 25, 2019

 (a) (b)

When the price of an asset declines, all implied volatilities calculated
from options on the asset tend to increase, and vice versa. However, the
implied volatilities do not all change by the same amount. This leads to
many variations in the pattern of implied volatilities.

Interestingly, two competing theories about the phenomenon that im-
plied volatilities tend to be negatively correlated with asset returns have
been proposed by researchers:

7 As the application in this section shows, when the asset price increases, volatility
tends to decrease, and vice versa. A trader might want to use a “volatility-adjusted
delta” for hedging that takes into account how volatility is expected to change when
the price of the underlying asset changes.

206 Chapter 10

 One theory, applicable to stocks and stock indices, is that when
the asset price declines (increases), the impact of debt in the cap-
ital structure becomes more (less) pronounced and volatility in-
creases (decreases).

 Another theory, known as the “volatility feedback effect hypoth-
esis” argues that when volatility increases (decreases), investors
in the asset require a higher (lower) return as compensation for
risk. As a result the price of the asset declines.

In the first theory, the causality is from asset price changes to volatility.
In the second theory, it is the other way around. On balance, the empirical
evidence seems to favor the second theory, but for our purposes the rea-
son for the relationship does not matter. We are merely interested in us-
ing data to quantify the relationship.

Our data consists of call options on the S&P 500 between 2014 and
2019. To keep the size of the data set manageable, we randomly sample
100 options per day, recording quotes for each option on both the day it
is sampled and the next day.8

The neural network has the structure shown in Figure 6.3. There are
three features:

 The percentage change in the S&P 500 from one day to the next
 The time to maturity
 The delta of the option

The target is the change in the implied volatility. The objective is to

minimize the mean squared error between the predicted change in the
implied volatility and the actual change. The results we will present here
use three hidden layers and 20 nodes per layer.

Table 10.1 shows a sample of the data. There were 125,700 observa-
tions in total. These were split randomly into a training set (75,420 ob-
servations or 60% of total), validation set (25,140 observations or 20%
of total), and test set (25,140 observations or 20% of total). As men-
tioned in Chapter 6, the performance of a neural network is improved
when the inputs are scaled. We used Z-score scaling (with the mean and
standard deviation taken from the training set). Table 10.2 shows the
data from Table 10.1 after this scaling has been applied.

8 The analysis presented here is a simplified version of that carried out by J.Cao, J.
Chen, and J. Hull, “A neural network approach to understanding implied volatility
movements,” forthcoming, Quantitative Finance, available at ssrn 3288067. Their
analysis used data between 2010 and 2017 and was based on 2.07 million observa-
tions on 53,653 call options.

207 Applications in Finance

In constructing a machine learning model, it is always useful to have
a simpler model as a benchmark. In this case, we use the following model

Expected change in implied volatility = 𝑅
𝑎 + 𝑏𝛿 + 𝑐𝛿2

√𝑇
 (10.1)

where R is the return on the asset (= change in price divided by initial
price), T is the option’s time to maturity,  is the option’s moneyness
(measured as delta) and a, b, and c are constants. This model was sug-
gested by Hull and White (2017) and is quite popular with practitioners.9
The a, b, and c can be estimated by regressing implied volatility changes

against 𝑅 √𝑇,⁄ 𝑅𝛿 √𝑇,⁄ and 𝑅𝛿2 √𝑇.⁄

Table 10.1 Sample of the original data. The return on the S&P 500 and
the change in the implied volatility are between the day specified and the
next business day. (See Excel file)

Date Return (%) on
S&P 500

Maturity
(years)

Delta Change in implied
volatility (bps)

Jan 28, 2015 0.95 0.608 0.198 −31.1
Sept 8, 2017 1.08 0.080 0.752 −54.9
Jan 24, 2018 0.06 0.956 0.580 −1.6
Jun 24, 2019 −0.95 2.896 0.828 40.1

Table 10.2 Data in Table 10.1 after using Z-score scaling for the inputs.
(See Excel file)

Date Return (%) on
S&P 500

Maturity
(years)

Delta Change in implied
volatility (bps)

Jan 28, 2015 1.091 −0.102 −1.539 −31.1
Sept 8, 2017 1.247 −0.695 0.445 −54.9
Jan 24, 2018 0.027 0.289 −0.171 −1.6
Jun 24, 2019 −1.176 2.468 0.716 40.1

Figure 10.4 shows results obtained by the neural network for the training
set and the validation set. (The mean squared errors have been smoothed
in producing Figure 10.4 by averaging them over 50 successive epochs.)

9 See J. Hull and A. White, “Optimal delta hedging for options,” Journal of Banking
and Finance, Sept 2017: 180-190.

208 Chapter 10

Following the approach explained in Chapter 6, we continue training un-
til there is no improvement in the results from the validation set. In our
example this happens after the 5,826th epoch. The test set results indi-
cated a modest 14% improvement over the model in equation (10.1).

Figure 10.4 Mean squared errors as the number of epochs is increased
for the training set and the validation set

Once a first model has been implemented, it is natural to look for ad-
ditional features that can improve results further. In this case, the VIX
index, observed on day t to predict changes between day t and t+1, is
found to produce a considerable improvement.10 (By trying Exercise
10.12, readers can verify this for themselves). We can deduce from this
that movements in the implied volatility surface tend to be different in
high and low volatility environments.

10.5 Using Reinforcement Learning for Hedging

In Section 10.2, we explained how delta is used for hedging a portfolio

of derivatives dependent on an underlying asset. For the purposes of our
next application, we suppose that we do not know how to calculate delta
and want to use reinforcement learning to calculate the optimal hedging
strategy for a short position in an option.

10 See results in J.Cao, J. Chen, and J. Hull, “A neural network approach to under-stand-
ing implied volatility movements,” forthcoming, Quantitative Finance, available at
ssrn 3288067.

0.00006

0.000065

0.00007

0.000075

0.00008

0.000085

0.00009

0 1000 2000 3000 4000 5000 6000 7000 8000

Mean Squared
Error

Epochs

Training Set

Validation Set

209 Applications in Finance

Suppose we want to hedge the sale of 10 call options where S = 100,
K = 100, = 0, r = 0, q = 0, = 20%, and T = 10 days or 0.04 years.11 The
hedge is accomplished by owning 0, 1, 2,…, or 10 shares (i.e., there are 11
possible positions). If the hedger knew that the option would be exer-
cised because the final price of the stock was certain to be greater than
100, it would be optimal for her to buy 10 shares. Similarly, if the hedger
knew that the option would be not be exercised because the final price of
the stock was certain to be less than 100, it would be optimal for the
hedger to hold no shares. In practice of course, the outcome is uncertain
and, when each hedging decision is made, the hedger must choose a po-
sition between 0 and 10 shares.12

We assume that the behavior of the stock price is that underlying
Black−Scholes−Merton model. As mentioned earlier, this means that the
rate of return in the stock price in a short period of time, t, is normally

distributed with mean t and standard deviation 𝜎√∆𝑡. The stock price
calculated from the model is rounded to the nearest integer.

We assume that the hedge position (i.e., number of shares owned) can
be changed once a day so that a total of 10 decisions have to be made. The
states for the reinforcement learning algorithm at the time hedging deci-
sion is made on a day are defined by

 The number of shares currently held (i.e., the position taken on

the previous day)
 The stock price

As mentioned there are 11 possible values for the number of shares cur-
rently held. A total of 15 possible price states are considered:

≤93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, ≥107

To simplify matters we assume that at most five shares can be bought
and five shares can be sold. For example, if the current holding is 7, pos-
sible actions (i.e., changes in the position) are −5, −4, −3, −2, −1, 0, +1, +2,
and +3. Similarly, if the current holding is 2, possible actions are −2, −1,
0, +1, +2, +3, +4, and +5.

The objective function is to minimize the variance of the hedging cost.
The expected cost in each period (regardless of the decision taken) can
be assumed to be zero. The changes in the value of the hedged position

11 We assume 250 trading days in a year.
12 In practice, an option contract is to buy or sell 100 shares and the shares them-
selves are bought or sold in multiples of 100. We assume that only 11 different posi-
tions can be taken to simplify the analysis.

210 Chapter 10

on successive days are assumed to be independent. Because the interest
rate is zero, this means that the objective is to minimize

∑ 𝐻𝑖
2

𝑖

where Hi is change in the value of the hedger’s position during the ith day
and the summation is taken over all periods from the current one on-
ward. If Ni is the number of shares held at the beginning of the ith day,
Si is the stock price at the beginning of the ith day, and ci is the value of
the call option at the beginning of the ith day (obtained from the Black-
Scholes−Merton equation),

𝐻𝑖 = 𝑁𝑖(𝑆𝑖+1 − 𝑆𝑖) − 10(𝑐𝑖+1 − 𝑐𝑖)

Our Python implementation is at
www-2.rotman.utoronto.ca/~hull

We generated three million paths for the stock price for the training set.
(The fact that three million paths are necessary for such a small problem
emphasizes the point made in Chapter 7 that reinforcement learning is
“data hungry.”) We then used a further 100,000 paths for the test set. In-
itially the probability of exploration was 100%. The probability of explo-
ration decreases as the algorithm proceeds so that the probability of ex-
ploration during a trial is 0.999999 times its value at the preceding trial.
The minimum value for the probability of exploration was 5%.

We find that the reinforcement learning model tracks delta hedging
reasonably well. The mean absolute difference between the position
taken by the reinforcement learning algorithm and that taken by delta
hedging across all days was 0.32 for the test set. The standard deviation
of the cost of writing the option and hedging it was about 9% higher
when the algorithm was used than when delta hedging was used.

10.6 Extensions

Two criticisms might be levelled at the analysis just presented. First,

the problem does not need to be solved with reinforcement learning be-
cause the equation for delta under Black−Scholes−Merton assumptions
is well known (see Section 10.2). Second, the problem is not really a
multi-period one. The delta each day can be calculated independently of
the delta on each other day.

However, there are extensions of the analysis that make it relevant. In
practice, a trader faces bid–ask spreads, i.e., the ask price at which she

211 Applications in Finance

can buy an instrument is generally higher than the bid price at which she
can sell the instrument. If bid−ask spreads are not negligible, the trader
wants to use a strategy where the cost of buying and selling is weighed
against the reduction in risk. The objective function can then be

∑(𝐶𝑖 + 𝛼𝐻𝑖
2)

𝑖

where Ci is the transaction cost (arising from the bid−ask spread) in-
curred in period i and Hi is as before the change in the value of the
hedger’s position on day i with the summation being taken over all hedg-
ing periods from the current one onward. The parameter defines the
trade-off between expected costs and variance of costs.

Delta hedging is not optimal when transaction costs are considered
and the problem is then a genuine multi-period problem that requires
reinforcement learning.13 The code which accompanies the analysis in
Section 10.5 can be extended to consider this problem (see Exercise
10.14).

Even when trading the underlying asset entails negligible bid−ask
spreads, a trader may want to use reinforcement learning for hedging
volatility risk. The exposure to volatility is measured by what is known
as vega. Changing vega requires taking a position in another derivative
dependent on the same underlying asset. Trading derivatives almost in-
variably involves non-negligible bid−ask spreads, making the use of re-
inforcement learning to derive a hedging strategy particularly relevant.

The reinforcement learning algorithm can be used with a number of
different stochastic processes (For vega hedging a process where the vol-
atility is stochastic is obviously necessary). In practice, there is some un-
certainty about the process that the asset will follow. One approach sug-
gested by Cao et al (2019) is to use a mixture of processes (with each one
being equally likely to be chosen for creating a path) and train the model
on the mixture.14 The hedging scheme should then work reasonably well
on all the processes.

13 This problem is considered by J. Cao, J. Chen, J. Hull and Z. Poulos, “Deep hedging
of derivatives using reinforcement learning,” Working paper, 2019, available at ssrn
3514586; H. Buehler, L. Gonon, J. Teichmann, B. Wood, “Deep hedging,” 2019, availa-
ble at ssrn: 3120710; and P.N. Kolm and G. Ritter, “Dynamic replication and hedging:
a reinforcement learning approach,” Journal of Financial Data Science, Winter 2019:
159-171.
14 See by J. Cao, J. Chen, J. Hull and Z. Poulos, “Deep hedging of derivatives using rein-
forcement learning,” Working paper, 2019, available at ssrn 3514586.

212 Chapter 10

10.7 Other Finance Applications

There are many other applications of machine learning in finance. For

example:
 Machine learning is used extensively in investing. As described

in Chapter 8, sentiment analysis can be used to determine the
influence of opinions in blogs, tweets, news articles, etc. on asset
returns. As mentioned, Renaissance Technologies, a secretive
hedge fund run by mathematicians, has used machine learning
for investing very profitably for many years. Many other hedge
funds now use machine learning to make portfolio management
decisions, sometimes without any human intervention.15

 Machine learning is sometimes used by private equity compa-
nies. Data on start ups, can be used to determine the features
that predict success (e.g., the age of the company, sales growth,
the characteristics of the management team, and so on).

 Natural language processing is sometimes used by human re-
source professionals for dealing with the large number of re-
sumes that are received.

 Handling loan applications has been a very successful applica-
tion of machine learning. We have illustrated how this can be
done with data from Lending Club earlier in this book. Banks
throughout the world are moving routine lending decisions
from human loan officers to algorithms such as those we have
illustrated. (This is in spite of the fact that humans can do some
things algorithms cannot such as meet with the borrower and
assess the borrower’s character.) New accounting standards
such as IFRS 9 require that the valuation of loans on the balance
sheet reflect expected losses. This provides an extra incentive
for banks to come up with robust methods for estimating prob-
abilities of default and recovery rates.

 Identifying fraudulent transactions, money laundering, and mis-
conduct by employees or agents is an important activity for fi-
nancial institutions. This is proving to be an area where ma-
chines can outperform humans.

 As indicated in Chapter 7, reinforcement learning can be used
for order execution. When a large buy or sell order is to be plac-

15 For a discussion of this, see: M. Lopez de Prado, Advances in machine learning, John
Wiley and Sons, 2018 and S. Gu, B. Kelly, and D. Xiu, “Empirical asset pricing and
machine learning,” 2019, available at dachxiu.chicagobooth.edu/download/ML.pdf

213 Applications in Finance

ed, a trader has to find a balance between (a) placing a large or-
der all at once and potentially moving the market and (b)
spreading the required trade over a period of time and risking
adverse market moves.

 Many transactions require collateral and often there are alter-
native assets that can be used for this purpose (e.g., Treasury
bonds, Treasury bills, and corporate bonds). Machine learning
can assist in making optimal collateral decisions.

 Some derivatives have to be valued using Monte Carlo simula-
tion or other quite slow numerical procedures. This creates
problems when scenarios and other analyses are carried out to
investigate the risks in a portfolio. As explained in Chapter 6, one
approach is to create a neural network to replicate the value of
the derivative obtained from the numerical procedure. Valuing
the derivative then involves working forward through the net-
work, which is very fast. There is a lot of computational effort
involved in generating the training set, but this can be a good
investment.16

Summary

There are many applications of machine learning in finance. Many of

these applications involve derivatives. In Chapter 6, we saw how a neural
network can replicate a method for pricing derivatives. Once it has been
developed, the neural network provides very fast pricing. This can be at-
tractive when traditional ways of pricing the derivative are computation-
ally very time consuming.

In this chapter, we have looked at two applications of machine learn-
ing in some detail. One involves trying to understand volatility move-
ments. The relationship between movements in an option’s implied vol-
atility and the price of the underlying asset is highly non-linear. Neural
networks can be used in conjunction with historical data to quantify this
relationship.

The other application involves hedging. When there are trading costs,
hedging involves complex multi-period decision making and is ideally
suited to reinforcement learning. In this case, the only viable approach is
to use a model to generate training data because historical data is not

16 For a fuller description, see R. Ferguson and A. Green, “Deeply learning deriva-
tives,” October 2018, available at ssrn: 3244821.

214 Chapter 10

available in the volume required. The application in this chapter illus-
trates how several million paths for the underlying asset price can be
used to determine a viable hedging strategy.

There are many other applications of machine learning in finance in-
volving the algorithms covered in this book. We have used lending deci-
sions to illustrate classification in Chapter 3, 4, and 5. Other applications
include those in areas such as fraud detection, order execution, and in-
vestment.

SHORT CONCEPT QUESTIONS

10.1 What is the difference between a call option and a put option?
10.2 Why does the price of a derivative depend on volatility?
10.3 What is meant by the moneyness of an option? How is it measured?
10.4 What are the six variables that the price of an option depends on

in the Black-Scholes model?
10.5 Explain what delta-neutrality means.
10.6 What is an implied volatility?
10.7 What is a volatility surface?
10.8 How does the volatility surface usually move when the price of an

asset changes? Do these movements increase or reduce a deriva-
tive trader’s exposure to movements in the price of the underlying
asset when a call option has been sold?

10.9 Under what circumstances does reinforcement learning lead to an
improvement over delta hedging?

10.10 Why is reinforcement learning likely to be particularly useful for
hedging against movements in volatility?

EXERCISES

10.11 In the application in Section 10.4, use the Python code available at
www-2.rotman.utoronto.ca/~hull

to test the effect of:
(i) Changing the number of hidden layers from three to (a) one

and (b) five.
(ii) Changing the number of nodes per layer from 20 to (a) 10

and (b) 40.
(iii) Using a different activation function such as relu.
(iv) Using min-max scaling (for this test, a useful resource is

Sklearn’s MinMaxScaler).

215 Applications in Finance

10.12 Use the Python code at
www-2.rotman.utoronto.ca/~hull

to repeat the analysis in Section 10.4 adding the value of the VIX
index (observed on the first of the two days that the implied vola-
tility and S&P 500 are observed) as a feature. Values for the VIX
index can be downloaded from the Yahoo Finance website.

10.13 Use the Python code at
www-2.rotman.utoronto.ca/~hull

to carry out the analysis in Section 10.5 for a 20-day option and
compare your results with those for a 10-day option.

10.14 Use the Python code at
www-2.rotman.utoronto.ca/~hull

to extend the application in Section 10.5 along the lines suggested
in Section 10.6. Assume that the cost of trading is 1% of the value
of what is traded and that the  parameter defining the trade off
between the mean cost and variance of cost is 0.15. Compare your
results with those from delta hedging.

217

Chapter 11

Issues for Society

Computers have been used to automate tasks such as record keeping

and sending out invoices for many years, and for the most part society
has benefited from this. But it is important to emphasize that the inno-
vations we have talked about in this book involve more than just the
automation of tasks. They allow machines to learn. Their aim is to al-
low machines to make decisions and interact with the environment sim-
ilarly to the way human beings do. Indeed, in many cases the aim is to
train machines so that they improve on the way human beings carry out
certain tasks.

We have mentioned the success of Google’s AlphaGo in beating the
world champion Go player, Ke Jie. Go is a very complex game. It has too
many moves for the computer to calculate all the possibilities. AlphaGo
used a deep learning strategy to approximate the way the best human
players think about their moves and then improve on it. The key point
here is that AlphaGo’s programmers did not teach AlphaGo how to play
Go. They taught it to learn how to play Go.

Teaching machines to use data to learn and behave intelligently rais-
es a number of difficult issues for society. Who owns the data used by
machine learning algorithms? What biases are present in machine
learning algorithms? Can machines be taught to distinguish right from
wrong? Should the algorithms underlying machine learning be more
transparent? What are the implications of humans no longer being the

218 Chapter 11

most intelligent entities on earth? This chapter considers these ques-
tions.

11.1 Data Privacy

Issues associated with data privacy have received a great deal of

publicity, partly as a result of the activities of Cambridge Analytica. This
company worked for both Donald Trump’s 2016 presidential campaign
and for an organization campaigning for the U.K. to leave the European
Union. It managed to acquire and use personal data on millions of Face-
book users without obtaining permission from them. The data was de-
tailed enough for Cambridge Analytica to create profiles and determine
what kind of advertisements or other actions would be most effective in
promoting the interests of the organizations that had hired it.

Many governments are concerned about issues concerned with data
privacy. The European Union has been particularly proactive and
passed the General Data Protection Regulation (GDPR) which came into
force in May 2018.1 It recognizes that data is valuable and includes in its
requirements the following:

 A person must provide consent to a company before the company

can use the person’s data for other than the purpose for which it
was collected.

 If there is a data breach, notifications to everyone affected are
mandatory within 72 hours.

 Citizens have a “right to explanation” about the application of al-
gorithms to their data.

 Data must be safely handled across borders.
 Companies must appoint a data protection officer.

Fines for non-compliance with GDPR can be as high as 20 million eu-

ros or 4% of a company’s global revenue. It is likely that other govern-
ments will pass similar legislation to GDPR in the future. Interestingly,
it is not just governments that are voicing concerns about the need to
regulate the way data is used by companies. Mark Zuckerberg, Face-
book’s CEO, considers that rules are needed to govern the internet and
has expressed support for GDPR.2

1 See https://gdpr-info.eu/
2Zuckerberg’s views were outlined in a Washington Post article on March 30, 2019:

https://gdpr-info.eu/

Issues for Society 219

11.2 Biases

Human beings exhibit biases. Some are risk averse; others are risk

takers. Some are naturally caring; others are insensitive. It might be
thought that one advantage of machines is that they take logical deci-
sions and are not subject to biases at all. Unfortunately, this is not the
case. Machine learning algorithms exhibit many biases.

One bias is concerned with the data that has been collected. It might
not be representative. A classic example here (from a time well before
the advent of machine learning) is an attempt by Literary Digest to pre-
dict the result of the United States presidential election in 1936. The
magazine polled ten million people (a huge sample) and received 2.4
million responses. It predicted that Landon (a republican) would beat
Roosevelt (a democrat) by 57.1% to 42.9%. In fact, Roosevelt won.
What went wrong? The answer is that Literary Digest used a biased
sample consisting of Literary Digest readers, telephone users, and those
with car registrations. These were predominantly republican support-
ers.3 More recently, we can point to examples where facial recognition
software was trained largely on images of white people and therefore
did not recognize other races well, resulting in misidentifications by
police forces using the software.4

There is a natural tendency of machine learning to use readily avail-
able data and to be biased in favor of existing practices. We encountered
this in the data used in Chapters 3, 4, and 5 for classifying loans. The
data available for making lending decisions in the future is likely to be
the data on loans that were actually made in the past. It would be nice
to know how the loans that were not made in the past would have
worked out, but this data by its nature is not available. Amazon experi-
enced a similar bias when developing recruiting software. 5 Its existing
recruits were predominantly male and this led to the software being

https://www.washingtonpost.com/opinions/mark-zuckerberg-the-internet-needs-
new-rules-lets-start-in-these-four-areas/2019/03/29/9e6f0504-521a-11e9-a3f7-
78b7525a8d5f_story.html?noredirect=on&utm_term=.2365e1f19e4e
3 See P. Squire, “Why the 1936 Literary Digest Poll Failed,” The Public Opinion Quar-
terly, 52, 1 (Spring 1988): 125−133.
4 See R. McCullom, 2017, “Facial Recognition Software is Both Biased and Under-
studied,” at
 https://undark.org/article/facial-recognition-technology-biased-understudied/
5 For an account of this, see: https://www.reuters.com/article/us-amazon-com-
jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-
bias-against-women-idUSKCN1MK08G.

https://www.washingtonpost.com/opinions/mark-zuckerberg-the-internet-needs-new-rules-lets-start-in-these-four-areas/2019/03/29/9e6f0504-521a-11e9-a3f7-78b7525a8d5f_story.html?noredirect=on&utm_term=.2365e1f19e4e
https://www.washingtonpost.com/opinions/mark-zuckerberg-the-internet-needs-new-rules-lets-start-in-these-four-areas/2019/03/29/9e6f0504-521a-11e9-a3f7-78b7525a8d5f_story.html?noredirect=on&utm_term=.2365e1f19e4e
https://www.washingtonpost.com/opinions/mark-zuckerberg-the-internet-needs-new-rules-lets-start-in-these-four-areas/2019/03/29/9e6f0504-521a-11e9-a3f7-78b7525a8d5f_story.html?noredirect=on&utm_term=.2365e1f19e4e
https://undark.org/article/facial-recognition-technology-biased-understudied/
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

220 Chapter 11

 biased against women. As a result, its use was discontinued.
Choosing the features that will be considered in a machine learning

exercise is a key task. In most cases, it is clearly unacceptable to use fea-
tures such as race, gender, or religious affiliation. But data scientists
also have to be careful not to include other features that are highly cor-
related with these sensitive features. For example, if a particular neigh-
borhood has a high proportion of black residents, using “neighborhood
of residence” as a feature when developing an algorithm for loan deci-
sions may lead to racial biases.

There are many other ways in which an analyst can (consciously or
unconsciously) exhibit biases when developing a machine learning al-
gorithm. For example, the way in which data is cleaned, the choice of
models, and the way the results from an algorithm are interpreted and
used can be subject to biases.

11.3 Ethics

Machine learning raises many ethical considerations. Some people

feel that China has gone too far with its Social Credit System, which is
intended to standardize the way citizens are assessed.

Should machine learning be used in warfare? It is perhaps inevitable
that it will be. Google canceled Project Maven, which was a collabora-
tion with the U.S. Department of Defense to improve drone strike tar-
geting, after thousands of Google employees signed an open letter con-
demning the project. However, the U.S. and other nations continue to
research how AI can be used for military purposes.

Can machine learning algorithms be programmed to behave in a
morally responsible and ethical way? One idea here is to create a new
machine learning algorithm and provide it with a large amount of data
labeled as “ethical” or “non-ethical” so that it learns to identify non-
ethical data. When new data arrives for a particular project, the algo-
rithm is used to decide whether or not it is ethically appropriate to use
the data. The thinking here is that if a human being can learn ethical
behavior so can a machine. (Indeed, some have argued that machines
can learn to be more ethical than humans.)

An interesting ethical dilemma arises in connection with driverless
cars. If an accident is unavoidable, what decision should be taken? How
should an algorithm choose between killing a senior citizen and young-
er person? How should it choose between killing a jaywalker and some-
one who is obeying the rules for crossing roads? How should it choose
between hitting a cyclist wearing a helmet and one who is not? Dilem-

Issues for Society 221

mas such as these, which involve choosing who lives and who dies, are
sometimes referred to as the “trolley problem.”6

The interaction of human beings with machine learning technologies
can sometimes lead to unexpected results with inappropriate and un-
ethical behavior being learned. In March 2016, Microsoft released Tay
(short for “thinking about you”), which was designed to learn by inter-
acting with human beings on Twitter so that it would mimic the lan-
guage patterns of a 19-year-old American girl. Some Twitter users be-
gan tweeting politically incorrect phrases. Tay learned from these and
as a result sent racist and sexually charged messages to other Twitter
users. Microsoft shut down the service just 16 hours after it was re-
leased.

11.4 Transparency

In recent years a lot of progress has been made in making machine

learning algorithms more transparent. We discussed this in Chapter 9.
When making predictions, it is important to develop ways of making the
results of machine learning algorithms accessible to those who are af-
fected by the results. It is also important for companies to understand
the algorithms they use so that they can be confident that decisions are
being made in a sensible way. There is always a risk that algorithms
appear to be making intelligent decisions when they are actually taking
advantage of obscure correlations. We gave two examples of this in
Chapter 9. The German horse Hans appeared intelligent because there
was a correlation between the correct answer and the expressions on
the questioner’s face as the horse stomped its foot. Software might dis-
tinguish polar bears and dogs because of the background (ice or
grass/trees), not to the images of the animals themselves.

11.5 Adversarial Machine Learning

Adversarial machine learning refers to the possibility of a machine

learning algorithm being attacked with data designed to fool it. Argua-
bly it is easier to fool a machine than a human being! A simple example
of this is an individual who understands how a spam filter works and
designs an email to get past it. Spoofing in algorithmic trading is a form
of adversarial machine learning. A spoofer attempts to (illegally) ma-

6 The original trolley problem was a thought experiment in ethics concerning a run-
away trolley which will either kill five people or, if a lever is pulled, kill one person.

222 Chapter 11

nipulate the market by feeding it with buy or sell orders and canceling
before execution. Another example of adversarial machine learning
could be a malevolent individual who targets driverless cars, placing a
sign beside a road that will confuse the car’s algorithm and lead to acci-
dents.

One approach to limiting adversarial machine learning is to generate
examples of it and then train the machine not to be fooled by them.
However, it seems likely that humans will have to monitor machine
learning algorithms for some time to come to ensure that the algorithms
are not being manipulated. The dangers of adversarial machine learning
reinforce the points we have already made that machine learning algo-
rithms should not be black boxes without any interpretation. Transpar-
ency and interpretability of the output is important.

11.6 Legal Issues

We can expect machine learning algorithms to give rise to many is-

sues that have not previously been considered by the legal system. We
have already mentioned issues concerned with the ownership and use
of data. As it becomes more evident that data is a valuable commodity, it
is likely that class action lawsuits concerned with the misuse of data
will become common. We have explained how machine learning algo-
rithms can exhibit biases. We are likely to see more class action lawsuits
from groups that, rightly or wrongly, feel that an algorithm is biased
against them.

 Driverless cars are likely to become an important mode of transpor-
tation in the near future. If a driverless car hits a pedestrian, who is the
guilty party? It could be any of

 the person who programmed the car’s algorithm
 the manufacturer of the car
 the owner of the car

Contract law may have to be modified because in the future many

contracts are likely to be from one machine to another (with both ma-
chines using learning algorithms). What if there is a dispute? Could
there be a challenge in a court of law concerning whether a machine has
the authority to execute a contract?

It is not inconceivable that in the future machines will be given
rights (just as companies have rights today). Consider the situation
where a great deal of experience and intelligence (far exceeding that of

Issues for Society 223

any human being) is stored in a certain machine. Should a human being
be allowed to shut down the machine so that the experience and intelli-
gence is lost?

11.7 Man vs. Machine

Human progress has been marked by a number of industrial revolu-

tions:

1. Steam and water power (1760−1840)
2. Electricity and mass production (1840−1920)
3. Computers and digital technology (1950−2000)
4. Artificial intelligence (2000−present)

There can be no doubt that the first three industrial revolutions have

brought huge benefits to society. The benefits were not always realized
immediately but they have eventually produced big improvements in
our quality of life. At various times there were concerns that jobs tradi-
tionally carried out by humans would be moved to machines and that
unemployment would result. There were upheavals in society, but they
did not lead to permanent unemployment. Some jobs were lost during
the first three industrial revolutions, but others were created. For ex-
ample, the first industrial revolution led to people leaving rural life-
styles to work in factories. The second industrial revolution changed the
nature of the work done in factories with the introduction of assembly
lines. The third industrial revolution led to more jobs involving the use
of computers. The impact of the fourth industrial revolution is not yet
clear.

It is worth noting that the third industrial revolution did not require
all employees to become computer programmers. It did require people
in many jobs to learn how to use computers and work with software.
We can expect the fourth industrial revolution to be similar to the third
in that many individuals will have to learn new skills related to the use
of artificial intelligence.

We are now reaching the stage where machine learning algorithms
can make many routine decisions as well as, if not better than, human
beings. But the key word here is “routine.” The nature of the decision
and the environment must be similar to that in the past. If the decision
is non-standard or the environment has changed so that past data is not
relevant, we cannot expect a machine learning algorithm to make good
decisions. Driverless cars provide an example here. If we changed the

224 Chapter 11

rules of the road (perhaps on how cars can make right or left turns), it
would be very dangerous to rely on a driverless car that had been
trained using the old rules.

A key task for human beings is likely to be managing large data sets
and monitoring machine learning algorithms to ensure that decisions
are not made on the basis of inappropriate data. Just as the third indus-
trial revolution did not require everyone to become a computer pro-
grammer, the fourth industrial revolution will not require everyone to
become a data scientist. However, for many jobs it will be important to
understand the language of data science and what data scientists do.
Today, many jobs involve using programs developed by others for car-
rying out various tasks. In the future, they may involve monitoring the
operation of machine learning algorithms that have been developed by
others.

A human plus a trained machine is likely to be more effective than a
human or a machine on its own for some time to come. However, we
should not underestimate future advances in machine learning. Even-
tually machines will be smarter than human beings in almost every re-
spect. A continuing challenge for the human race is likely to be how to
partner with machines in a way that benefits rather than destroys socie-
ty.

225

Answers to End of Chapter
Questions

Chapter 1

1.1 Machine learning is a branch of artificial intelligence where intel-

ligence is created by learning from large data sets.
1.2 One type of prediction is concerned with estimating the value of a

continuous variable. The other is concerned with classification.
1.3 Unsupervised learning is concerned with identifying patterns

(clusters) in data.
1.4 Reinforcement learning is concerned with situations where a se-

quence of decisions has to be made in a changing environment.
1.5 Semi-supervised learning is concerned with making predictions

where some of the available data have values for the target and
some do not.

1.6 A validation set is used. If the answers given by the validation set
start to get worse as model complexity is increased there is over-
fitting.

1.7 The validation set is used to compare models so that one that has
good accuracy and generalizes well can be chosen. The test set is
held back to provide a final test of the accuracy of the chosen
model.

1.8 A categorical feature is a non-numerical feature where data is as-
signed to one of a number of categories.

1.9 The bias-variance trade-off is the trade-off between (a) under-fit-
ting and missing key aspects of the relationship, and (b) over-fit-
ting so that idiosyncrasies in the training data are picked up. The

226 Answers

linear model is under-fitting and therefore gives a bias error. The
fifth order-polynomial model is over-fitting and therefore gives a
variance error.

1.10 Data cleaning can involve (a) correcting for inconsistent recording,
(b) removing observations that are not relevant, (c) removing du-
plicate observations, (d) dealing with outliers, and (e) dealing with
missing data.

1.11 Bayes’ theorem deals with the situation where we know the prob-
ability of X conditional on Y and we want the probability of Y con-
ditional on X.

1.12 For a polynomial of degree three, the standard deviation of the er-
ror for the training set and the validation set are 31,989 and
35,588, respectively. For a polynomial of degree 4, the standard
deviation of the error for the training set and the validation set are
21,824 and 37,427, respectively. As the degree of the polynomial
increases, we obtain more accuracy for the training set but there
is a bigger difference between the performance of the model for
the training set and the validation set.

1.13 Using Bayes’ theorem

𝑃(Spam|Word) =
𝑃(Word|Spam)𝑃(Spam)

𝑃(Word)

 =
0.4 × 0.25

0.125
= 0.8

There is an 80% chance that an email containing the word is
spam.

Chapter 2

2.1 Feature scaling is necessary in unsupervised learning to ensure

that features are treated as being equally important. In the Z-score
method, each feature is scaled so that it has a mean of zero and a
standard deviation of one. In min-max scaling each feature is
scaled so that the lowest value is zero and the highest is one. Min-
max scaling does not work well when there are outliers because
the rest of the scaled values are then close together. But it may
work better than the Z-score method when features have been
measured on different scales with lower and upper bounds.

2.2 The distance is √(6 − 2)2 + (8 − 3)2 + (7 − 4)2 = 7.07.

End of Chapter Questions 227

2.3 The center is obtained by averaging feature values. It is the point
that has values 4, 5.5, and 5.5 for the three features.

2.4 We choose k points as cluster centers, assign observations to the
nearest cluster center, re-compute cluster centers, re-assign ob-
servations to cluster centers, and so on.

2.5 In the elbow method we look for the point at which the marginal
improvement in inertia (i.e., within cluster sum of squares) when
an additional cluster is introduced is small. In the silhouette
method, we calculate for each value of k and for each observation
i

a(i): the average distance from other observations in its own
cluster, and

b(i): the average distance from observations in the nearest clus-
ter.

The observation’s silhouette is

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}

and the best value of k is the one for which the average silhouette
across all observations is greatest.

2.6 As the number of features increases, the sum of the squared differ-
ences between feature values has more terms and therefore tends
to increase. When the ten additional features are created by mis-

take, the distance between two observations increases by √2 be-
cause every squared difference is calculated twice.

2.7 In hierarchical clustering we start by putting every observation in
its own cluster. At each step, we find the two closest clusters and
join them to create a new cluster. The disadvantage is that it is
slow. The advantage is that it identifies clusters within clusters.

2.8 Distribution-based clustering involves assuming that observations
are created by a mixture of distributions and using statistical
methods to separate them. Density-based clustering involves add-
ing new points to a cluster that are close to several points already
in the cluster. It can lead to non-standard shapes for the clusters.

2.9 Principal components analysis (PCA) is useful when there are a
number of highly correlated features. It has the potential to explain
most of the variability in the data with a small number of new fac-
tors (which can be considered as manufactured features) that are
uncorrelated with each other.

2.10 A factor loading is the amount of each original feature in the factor.
Each observation can be expressed as a linear combination of the

228 Answers

factors. A factor score for an observation is the amount of the fac-
tor in the observation.

2.11 We can verify the numbers in Table 2.5 as follows:

 Peace
index

Legal risk in-
dex

GDP

Average for 14 high-
risk countries

 2.63 4.05 −3.44

Average for all coun-
tries

 2.00 5.60 2.37

SD for all countries 0.45 1.49 3.24
Normalized average
for 14 countries

 1.39 −1.04 −1.79

For example, for the peace index, (2.63−2.00)/0.45 = 1.39.

2.12 Define X1, X2, X3, and X4 as the corruption index, peace index, legal
index, and GDP growth rate. If these are normalized Table 2.11
shows that the factors are:

0.594X1−0.530X2+0.585X3+0.152X4

and

0.154X1+0.041X2+0.136X3−0.978X4

The first factor assigns roughly equal weight to the three indices
and little weight to GDP growth rate. The second factor assigns
nearly all the weight to GDP growth rate. This shows that GDP
growth rate is providing a different type of information from the
other three measures.
If we want to create factors using non-normalized data, we can di-
vide each coefficient by the standard deviation of the correspond-
ing feature value. The first factor becomes:

0.031X1−1.185X2+0.394X3+0.047X4

and the second one becomes:

0.008X1+0.092X2+0.091X3−0.302X4

End of Chapter Questions 229

Chapter 3

3.1 The objective in “plain vanilla” linear regression is to minimize the

mean squared error of the forecasted target values.
3.2 In the case of Ridge regression we add a constant times the sum of

the squares of the coefficients to the mean squared error. In the
case of Lasso regression we add a constant times the sum of the
absolute values of the coefficients. In the case of Elastic Net regres-
sion we add a constant times the sum of the squares of the coeffi-
cients and a different constant times the sum of the absolute val-
ues of the coefficients.

3.3 Ridge regression reduces the magnitude of the coefficients when
the correlation between features is high. Lasso regression sets to
zero the values of the coefficients of variables that have little effect
on prediction results.

3.4 A single dummy variable which equals one if the house has air con-
ditioning and zero otherwise could be used.

3.5 We could use a single dummy variable which equals 0 for no slope,
1 for gentle slope, 2 for moderate slope, and 3 for steep slope.

3.6 We would create a dummy variable for each neighborhood. The
dummy variable equals one if the house is in the neighborhood and
zero otherwise.

3.7 Regularization is designed to avoid over-fitting by reducing the
weights (i.e. coefficients) in a regression. L1 regularization is Lasso
where a constant times the sum of the absolute values of the coef-
ficients is added to the objective function. It makes some of the
weights zero. L2 regularization is Ridge where a constant times the
sum of the squares of the coefficients is added to the objective
function. It reduces the absolute magnitude of the weights.

3.8 The sigmoid function is:

𝑓(𝑦) =
1

1 + 𝑒−𝑦

3.9 The objective in logistic regression is to maximize

∑ ln(𝑄) + ∑ ln (1 − 𝑄)
Negative
Outcomes

Positive
Outcomes

where Q is the estimated probability of a positive outcome.

3.10 The true positive rate is the proportion of positive outcomes that
are predicted correctly. The false positive rate is the proportion of

230 Answers

negative outcomes that are predicted incorrectly. The precision is
the proportion of positive predictions that are correct.

3.11 In the ROC curve the true positive rate is plotted against the false
positive rate. It shows the trade-off between correctly predicting
positive outcomes and failing to predict negative outcomes.

3.12 The dummy variable trap is the problem that when a categorical
variable is hot encoded and there is a bias (constant term), there
are many sets of parameters that give equally good best fits to the
training set. The problem is solved with regularization.

3.13 The plain vanilla linear regression result for salary (‘000s), Y, is:

 𝑌 = 178.6 − 20,198.5𝑋1 + 89,222.3𝑋2

−151, 267.2𝑋3 + 116,798.2𝑋4 − 34,494.8𝑋5

 With an mse of 604.9. For Ridge we have:

 A b1 b2 b3 b4 b5 mse

0.02 178.6 102.5 56.2 10.0 −33.4 −72.9 889.5
0.05 178.6 78.2 43.4 9.7 −21.1 −48.2 1,193.9
0.10 178.6 57.3 33.3 10.2 −10.7 −28.9 1,574.0

 For Lasso we have

 A b1 b2 b3 b4 b5 mse

0.02 178.6 0.0 175.6 0.0 264.0 −380.3 711.8
0.05 178.6 0.0 250.8 0.0 0.0 −190.2 724.4
0.10 178.6 0.0 249.7 0.0 0.0 −189.1 724.6

3.14 (a) The objective function in equation (3.7) has the nice property

that

1 − 𝑄 = 1 −
1

1 + exp(−𝑎 − ∑ 𝑏𝑗𝑋𝑗
𝑚
𝑗=1)

=
exp(−𝑎 − ∑ 𝑏𝑗𝑋𝑗

𝑚
𝑗=1)

1 + exp(−𝑎 − ∑ 𝑏𝑗𝑋𝑗
𝑚
𝑗=1)

=
1

1 + exp(𝑎 + ∑ 𝑏𝑗𝑋𝑗
𝑚
𝑗=1)

 When default is made the positive outcome, the maximum likeli-

hood objective function leads to the sign of the bias and the sign of
each of the weights changing. However, estimates of the probabil-
ity of default and no-default are unchanged.

 (b) When Z=0.25, the confusion matrix is

End of Chapter Questions 231

 Predict positive

(default)
Predict negative

(no default)
Outcome positive

(default)
1.62% 16.26%

Outcome nega-
tive (no default)

4.53% 77.59%

When Z=0.20, the confusion matrix is

 Predict positive

(default)
Predict negative

(no default)
Outcome positive

(default)
8.13% 9.75%

Outcome negative
(no default)

26.77% 55.34%

 When Z=0.15, the confusion matrix is

 Predict positive
(default)

Predict negative
(no default)

Outcome positive
(default)

14.15% 3.74%

Outcome negative
(no default)

53.47% 28.65%

The ratios become:

 Z = 0.25 Z = 0.20 Z = 0.15
Accuracy 79.21% 63.47% 42.80%
True Positive Rate 9.07% 45.46% 79.11%
True Negative Rate 94.48% 67.39% 34.89%
False Positive Rate 5.52% 32.61% 65.11%
Precision 26.37% 23.29% 20.93%
F-score 13.50% 30.80% 33.10%

(c) The ROC curve can be calculated by changing the data so that a
default is labeled as 1 and no-default is labeled as 2. The ROC curve
is

232 Answers

Define TPR(new), FPR(new), and Z(new) as the true positive rate,
false positive rate, and Z-value when default is the positive out-
come and TPR(old), FPR(old), Z(old) as the true positive rate, false
positive rate, and Z-value when no-default is the positive outcome.
When the Z(new) equals one minus the Z(old)), we have

TPR(new) =1− FPR(old)

FPR(new) =1 −TPR(old)

 This symmetry leads to AUC being unchanged.

Chapter 4

4.1 In the decision tree approach the features are considered one-by-

one in order of importance whereas in the regression approach
they are considered all at once. The decision tree approach does
not assume linearity and is more intuitive. It is also less sensitive
to outlying observations than linear regression.

4.2 When there are n alternative outcomes entropy is

− ∑ 𝑝𝑖

𝑛

𝑖=1

ln (𝑝𝑖)

where 𝑝𝑖 is the probability of the ith outcome.

4.3 When there are n alternative outcomes the Gini measure is defined
as

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 P

o
si

ti
v

e
 R

a
te

False Positive Rate

End of Chapter Questions 233

1 − ∑ 𝑝𝑖
2

𝑛

𝑖=1

where 𝑝𝑖 is the probability of the ith outcome.

4.4 Information gain is measured as the reduction in either entropy or
the Gini measure.

4.5 The threshold is the value that maximizes the information gain.
4.6 The naïve Bayesian classifier assumes that, for observations in a

class, feature values are independent.
4.7 The ensemble method is a way of combining multiple algorithms

to make a single prediction.
4.8 A random forest is an ensemble of decision trees. The different de-

cision trees are created by using a subset of features or a subset of
observations or by changing threshold values.

4.9 Bagging involves sampling from observations or features so that
the same algorithm is used on different training sets. Boosting in-
volves creating models sequentially with each model attempting
to correct the error made by the previous model.

4.10 The decision tree algorithm is transparent in that it is easy to see
why a particular decision was made.

4.11 Predict that loans are good only if FICO > 717.5 and Income >
$48,750. The confusion matrix is:

 Predict no default Predict default

Outcome positive
(no default)

12.94% 69.19%

Outcome negative
(default)

1.42% 16.45%

4.12 Conditional on a good loan, the probability density for a FICO score

of 660 is
1

√2𝜋 × 31.29
exp (−

(660 − 696.19)2

2 × 31.292
) = 0.0065

Conditional on a good loan, the probability density function for an
income of 40 is

1

√2𝜋 × 59.24
exp (−

(40 − 79.83)2

2 × 59.242
) = 0.0054

234 Answers

Conditional on a default the probability density for a FICO score of
660 is

1

√2𝜋 × 24.18
exp (−

(660 − 686.65)2

2 × 24.182
) = 0.0090

Similarly, conditional on a default the probability density for an in-
come of 40 is

1

√2𝜋 × 48.81
exp (−

(40 − 68.47)2

2 × 48.812
) = 0.0069

The probability of the loan being good is

0.0065 × 0.0054 × 0.8276

𝑄
=

2.90 × 10−5

𝑄

where Q is the joint probability density of FICO = 660 and income
=40. The probability of the loan defaulting is

0.0069 × 0.0090 × 0.1724

𝑄
=

1.07 × 10−5

𝑄

The probability of the loan defaulting is therefore

1.07

1.07 + 2.90

or about 27%.

Chapter 5

5.1 The objective in SVM classification is to find a pathway that mini-

mizes an objective function which is a function of the cost of viola-
tions and the width of the pathway. The center of the pathway is
used to classify observations.

5.2 In a hard margin classification, the objective is to find the widest
path that has no misclassified observations (assuming such a path-
way exists). In a soft margin classification, an objective function
incorporates a trade-off between the width of the pathway and the
extent of the misclassification.

5.3 The initial equations are

End of Chapter Questions 235

∑ 𝑤𝑗𝑥𝑗 = 𝑏𝑢

𝑚

𝑗=1

∑ 𝑤𝑗𝑥𝑗 = 𝑏𝑑

𝑚

𝑗=1

Without loss of generality parameters can be scaled so that the
equations become

∑ 𝑤𝑗𝑥𝑗 = 𝑏 + 1

𝑚

𝑗=1

and

∑ 𝑤𝑗𝑥𝑗 = 𝑏 − 1

𝑚

𝑗=1

5.4 The width of the pathway decreases as we give more weight to vi-
olations.

5.5 For a positive outcome observation, it is

max (𝑏 + 1 − ∑ 𝑤𝑗

𝑚

𝑗=1
𝑥𝑖𝑗 , 0)

for negative outcome observations it is

max (∑ 𝑤𝑗

𝑚

𝑗=1
𝑥𝑖𝑗 − 𝑏 + 1, 0)

5.6 We transform the features and create new features so that linear

classification can be used.
5.7 A landmark is a point in feature space, which may or may not cor-

respond to an observation, and the Gaussian radial bias function is
a synthetic feature whose value for an observation declines as the
observation becomes further away from landmark.

5.8 In SVM regression the objective is to find a pathway with a pre-
specified width through the space defined by the target and the
features. The pathway is designed to include as many observations
as possible. Observations outside the pathway give rise to viola-
tions. The objective function minimizes the extent of the violations
and incorporates some regularization. Similarly to Ridge regres-
sion, the regularization is designed to avoid weights that are large

236 Answers

 in magnitude.
5.9 The differences are as follows:

 The relationship between the target and the features is repre-
sented by a pathway rather than a single line.

 The prediction error is counted as zero when an observation
lies within the pathway

 Errors for observations outside the pathway are calculated as
the difference between the target value and the closest point
in the pathway that is consistent with the feature values.

 There is some regularization built into the objective function.
5.10 The table produced by Sklearn’s SVM package is as follows. The

numbers produced by Excel may be slightly different.

C w1 w2 B Loans mis-
classified

Width of
pathway

0.01 0.042 0.015 3.65 20% 44.8
0.001 0.038 0.013 3.40 20% 49.8

0.0005 0.019 0.008 1.90 20% 96.8
0.0003 0.018 0.004 1.71 30% 105.6
0.0002 0.018 0.002 1.63 40% 212.7

Chapter 6

6.1 A hidden layer is a set of intermediate values used when the out-

puts are calculated from the inputs in a neural network. The set
of inputs form the input layer. The set of outputs form the output
layer. A neuron is one element within a hidden layer for which a
value is calculated. An activation function is the function used for
the calculation of the values at neurons in one layer from values
at neurons in the previous layer.

6.2 The sigmoid function for calculating the value at a neuron is

𝑓(𝑦) =
1

1 + 𝑒−𝑦

 where y is a constant (the bias) plus a linear combination of the

values at the neurons in the previous layer.
6.3 The universal approximation theorem states that any continuous

non-linear function can be approximated to arbitrary accuracy us-
ing a neural network with one layer.

End of Chapter Questions 237

6.4 When the target is numerical the suggested final activation func-
tion is linear. When observations are being classified, the sug-
gested activation function is the sigmoid function.

6.5 The learning rate is the size of the step taken down the valley once
the line of steepest descent has been identified.

6.6 If the learning rate is too low the steepest descent algorithm will
be too slow. When it is too high there are liable to be oscillations
with the minimum not being found.

6.7 The results for the validation set are produced at the same time as
the results for the training set. The algorithm is stopped when the
results for the validation set start to worsen. This is to avoid over-
fitting.

6.8 When a derivative is normally valued using a computationally
slow numerical procedure such as Monte Carlo simulation, an
ANN can be created for valuation. Data relating the derivative’s
value to the inputs is created using the numerical procedure. The
ANN is then trained on the data and used for all future valuations.

6.9 In a regular ANN the value at a node in one layer is related to val-
ues at all nodes in the previous layer. In a CNN it is related to a
small subset of the nodes in the previous layer.

6.10 In an RNN there is a time sequence to the data. The nodes in one
layer are related to values calculated for the same nodes at the
previous time as well as to the nodes in the previous layer.

6.11 The number of parameters is 6×10+10×11×1+11×1= 181
6.12 When the starting point is 1.0000 and the learning rate is 0.0002

we obtain:

Iteration Value of b Gradient Change in b
0 1.0000 −11,999 2.3998
1 3.3998 −4342.2 0.8684
2 4.2682 −1571.4 0.3143
3 4.5825 −568.6 0.1137
4 4.6962 −205.8 0.0412
5 4.7374 −74.5 0.0149
6 4.7523 −26.9 0.0054
7 4.7577 −9.8 0.0020
8 4.7596 −3.5 0.0007
9 4.7603 −1.3 0.0003
10 4.7606 −0.5 0.0001
11 4.7607 −0.2 0.0000
12 4.7607 −0.1 0.0000

238 Answers

6.13 The sigmoid function has an argument of zero so that V1 = V2 = V3 =
0.5. The house value is calculated as 3 × 0.5 × 100 = 150.

Chapter 7

7.1 In reinforcement learning the objective is to calculate the best

strategy for taking a sequence of decisions through time in a
changing environment. Supervised learning involves one or more
estimates being made from features at a single point in time.

7.2 Exploitation involves taking the best action identified so far. Ex-
ploration involves randomly selecting a different action. If an al-
gorithm just involved exploitation it might never find the best ac-
tion. If it just involved exploration, it would not benefit from what
it has learned.

7.3 Dynamic programming involves working from the horizon date
back to the beginning, working out the best action for each of the
states that can arise.

7.4 The optimal strategy is to leave your opponent with 4n+1 matches
where n is an integer. When there are 8 matches the optimal strat-
egy is to pick up 3 matches. After 1000 games this has been iden-
tified as the best strategy, but not convincingly so. After 5,000 and
25,000 games, the best decisions become more clearly differenti-
ated.

7.5 In the Monte Carlo approach each trial involves actions being
taken with exploration and exploitation. The new observation on
the value of taking a particular action in a particular state is the
total future reward (possibly discounted) from the time of the ac-
tion until the horizon date

7.6 In temporal difference learning each trial involves actions being
taken with exploration and exploitation. The new observation on
the value of taking a particular action in a particular state is de-
termined by looking one period ahead and using the most recent
estimate of the value of being in the state that will be reached.

7.7 When there are many actions or many states (or both) the ac-
tion/state matrix does not fill up quickly and values can be esti-
mated using an ANN.

7.8 Deep Q-learning is when an ANN is used in conjunction with tem-
poral difference learning.

7.9 In the case of the Monte Carlo approach we update as follows:

Q(8,1) = 0.272+0.05(1.000−0.272) = 0.308

End of Chapter Questions 239

Q(6,1) = 0.155+0.05(1.000−0.155) = 0.197

Q(4,1) = 0.484+0.05(1.000−0.484) = 0.510

Q(2,1) = 0.999+0.05(1.000−0.999) = 0.999

In the case of the temporal difference approach we update as fol-
lows:

Q(8,1) = 0.272+0.05(0.155−0.272) = 0.266

Q(6,1) = 0.155+0.05(1.000−0.155) = 0.197

Q(4,1) = 0.484+0.05(0.999−0.484) = 0.510

Q(2,1) = 0.999+0.05(1.000−0.999) = 0.999

Chapter 8

8.1 A sentiment analysis involves processing textual data from such

sources as social media and surveys to determine whether it is
positive, negative, or neutral about a particular product, company,
person, event, etc.

8.2 There are some publicly available data sets where opinions have
been labeled. These are sometimes used for training. Otherwise, it
is necessary to manually label the opinions used for training and
testing.

8.3 The text must be split into words. Punctuation must be removed.
Very common words, such as “the”, “a” and “and” (referred to as
stop words) can be removed. Stemming can be applied to replace
a word by its stem (e.g., “sleeping” by “sleep”). Lemmatization can
be used to reduce a word to its root (e.g., “better” to “good”).
Spelling mistakes can be corrected. Abbreviations can be replaced
by the full word. Rare words can be removed.

8.4 Stemming involves removing suffices such as “ing” and “s”. Lem-
matization involves searching for the root word.

8.5 A bag-of-words model represents text by the frequency with
which words occur.

8.6 Negatives such as “not” mean that wrong conclusions are liable to
be reached if a bag-of-words model merely looks at the frequency
with which a single word appears. An improvement is to look at
word pairs (bigrams).

8.7 The naïve Bayes classifier assumes that the occurrence of one
word is independent of the occurrence of another word.

240 Answers

8.8 A trigram is a group of three words.
8.9 (a) Logistic regression provides a probability of a positive and neg-

ative sentiment while SVM does not.
 (b) Logistic regression does not require the assumption that the

occurrence of one word is independent of the occurrence of an-
other word.

8.10 Laplace smoothing is designed to deal with the problem that a
word appears in an opinion but not in one class of the training set
observations. It changes the probability of that class from zero to
a small number.

8.11 TF of a word in a document is the number of times the word ap-
pears in the document divided by the number of words in the doc-
ument. IDF of a word is log(N/n) where N is the total number of
documents and n is the number of documents containing the word.
In information retrieval, TF is multiplied by IDF to provide, for
each document that might be retrieved, a score for each word in a
search request.

8.12 A word vector is a set of numbers describing the meaning of a
word. It does this by quantifying the extent to which the word
tends to appear in close proximity to other words.

8.13 In this case, p1 = 0.667, p2 = 0.5, p3 = 0.667, q1 = 0.5, q2 = 0.25, and
q3 = 0.75. Also Prob(Pos) = 0.6 and Prob(Neg) = 0.4. The probabil-
ity of a positive sentiment is:

0.667 × 0.5 × 0.667 × 0.6

0.667 × 0.5 × 0.667 × 0.6 + 0.5 × 0.25 × 0.75 × 0.4
= 0.78

Chapter 9

9.1 Neural networks, SVM models, and ensemble models are difficult

to interpret.
9.2 The weights of a linear model have a simple interpretation. They

show the effect of changing the value of one feature while keeping
the others the same.

9.3 From Table 9.1, each extra square foot of lot size is worth $0.3795.
it follows that an extra 5,000 square feet is worth 5,000 × $0.3795
or $1,897.50.

9.4 It is the minus the sensitivity of a positive outcome or

−
exp[− (𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚)]

{1 + exp [− (𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚)]}2
𝑏𝑗𝑢

End of Chapter Questions 241

9.5 “Odds against” shows the profit of $1 bet that an event will happen
when the $1 is forfeited if it does not happen. “Odds on” shows the
amount that must be staked to provide a $1 profit if an event hap-
pens and a total loss if it does not happen. The natural logarithms
of odds on and odds against are linear in the features in a logistic
regression.

9.6 The contributions calculated for a feature usually assume that the
feature changes with all other features remaining fixed. If there are
interactions between features, it may be unrealistic to assume that
one feature can change without other features changing.

9.7 A partial dependence plot shows what happens on average when
one feature changes. Results are averaged over random changes in
the other features.

9.8 Shapley values are designed so that when there is a change the sum
of the contributions to the change of each feature equals the total
change.

9.9 LIME finds a simple model that fits a complicated model for values
of the features that are close to the currently observed values.

9.10 4! = 24.

Chapter 10

10.1 A call option is an option to buy at a certain price. A put option is

an option to sell at a certain price.
10.2 The payoffs for a derivative are not symmetrical. The impact of a

certain increase in the price of the underlying asset is not the

same as the impact of the same decrease in the price of the un-

derlying asset.

10.3 The moneyness of an option is a measure of the extent to which it
seems likely that the option will be exercised. It can be measured
by comparing S to K. Traders tend to measure moneyness of an op-
tion in terms of its delta.

10.4 The six variables are the stock price, strike price, risk-free rate,
dividend yield, volatility, and time to maturity.

10.5 A portfolio is delta neutral if its value is virtually unchanged when
a small change is made to the price of the underlying asset with all
other variables being kept the same.

10.6 An implied volatility is the volatility which, when substituted into
the Black−Scholes−Merton formula (or its extensions) gives the
market price of an option.

242 Answers

10.7 A volatility surface is a three-dimensional chart showing the rela-
tionship between (a) the implied volatility of an option and (b) its
strike price and time to maturity.

10.8 Volatilities tends to increase (decrease) when the price of the un-
derlying asset decreases (increases). An increase in the price of the
underlying asset causes a call option price to increase. However,
the increase tends to be accompanied by a decrease in volatility
which reduces the call option price. A decrease in the price of the
underlying asset causes a call option price to decrease. However,
the decrease tends to be accompanied by an increase in volatility
which increases the call option price. The relationship between the
volatility surface movements and the asset price movements
therefore tends to reduce a trader’s exposure to movements in the
asset price.

10.9 There are improvements when the cost of trading is not negligible.
10.10 When securities to hedge volatility are traded, bid−offer spreads

tend to be high.

243

Glossary of Terms

Accuracy ratio: The percentage of observations that are classified
correctly

Activation function: Function used to relate values at neurons in
one layer to values at neurons in previous layer

AdaBoost: Boosting where weights for misclassified observations
are increased

Adam: Short for adaptive moment estimation. It is a popular way
of choosing learning rates in neural networks

Adaptive learning rate: Learning rate in a neural network that is
designed to adapt to circumstances

Adversarial machine learning: Developing data to fool a machine
learning algorithm

Agglomerative clustering: See hierarchical clustering

AlphaGo: Program developed by Google to play the board game Go

ANN: See neural network
Artificial intelligence: The development of intelligence artificially.

Machine learning is one branch of artificial intelligence.

Artificial neural network: See neural network
AUC: Area under the ROC curve
Autoencoder: The use of a neural network to reduce the number

244 Glossary

of features in data

Backpropagation: A fast way of calculating partial derivatives in a
neural network by working from the end to the beginning

Bag-of-words: A natural language processing model where the
words in text are considered without regard to their order

Bagging: Training the same algorithm on different random subsets
of data

Bayes’ theorem: A theorem for inverting conditionality, i.e., deriv-
ing Prob(𝑌|𝑋) from Prob(𝑋|𝑌)

Bayesian learning: Using Bayes’ theorem to update probabilities

Bias: Constant term
Bias-variance trade-off: The trade-off between using a simple

model that under-fits the training set and a too complicated
model that over-fits

Bigram: A sequence of two words

Black-box model: Model that is difficult to interpret
Boosting: Iterative training procedure where one algorithm at-

tempts to correct errors in a previous algorithm
Categorical feature: Non-numerical feature that falls into one of a

number of categories

Centroid: The center of a cluster

Class: One of two or more groups into which data is divided
Class imbalance: Situation where the number of observations in

one class is quite different from the number in another class

Classification model: Model for dividing observations into classes
Classification threshold: Threshold for deciding which class an

observation belongs to

CNN: See convolutional neural network
Clustering: Process of dividing data into clusters so as to under-

stand it better
Confusion matrix: A table for classification models showing which

prediction for the test set are correct and which are incorrect
Convolutional neural network: A type of neural network particu-

larly suitable for image recognition where there are one or
more rectangular arrays of numbers at each layer

Cost function: The objective function to be minimized

Decision Tree: A way of considering features one by one

Decoding: The second part of an autoencoder

Deep Q-learning: Combining reinforcement learning with a neural

Glossary 245

network to determine Q-values

Deep reinforcement learning: See deep Q-learning
Density-based clustering: A way of forming non-standard cluster

patterns
Distribution-based clustering: A way of clustering by fitting ob-

servations to a mixture of distributions
Dropouts: Neurons removed in a gradient descent algorithm to

make training faster
Dummy variable: A variable that has a value of 0 or 1 to handle a

categorical feature
Dummy variable trap: A situation where the introduction of

dummy variables leads to no unique best fit set of parameters in
a linear regression.

Dynamic programming: Calculating optimal decisions by working
back from the horizon date

Elastic Net regression: Combination of Lasso and Ridge regres-
sion

Elbow method: Procedure for choosing the optimal number of
clusters by observing the effect on inertia

Encoding: The first part of an autoencoder
Ensemble learning: Learning by combining the results from sev-

eral algorithms

Entropy: A measure of uncertainty

Episode: A trial in reinforcement learning
Epoch: A set of iterations that make one complete use of the train-

ing set

Exploitation: Pursuing the best action identified so far

Exploration: Choosing an action at random
Exponentially weighted moving average: An average from past

observations where the weight given to the observation n peri-
ods ago is  times the weight given to the observation n−1 peri-
ods ago (< 1)

F1-score: See F-score
Factor loading: The amount of a feature in a factor when a princi-

pal components analysis is carried out
Factor score: The amount of a factor in an observation when a

principal components analysis is carried out
False negative rate: Percentage of positive outcomes predicted as

negative in classification

False positive rate: Percentage of negative outcomes predicted as

246 Glossary

positive in classification

Feature: A variable used in a machine learning algorithm
Feature map: A component of a layer in a convolutional neural

network
Feature scaling: A procedure to ensure that the features are

measured on similar scales

FICO score: Credit score in the United States
F-score: A measure calculated from the precision and true positive

rate in a classification
Gap statistic: A way of choosing the number of clusters by com-

paring the clustered data with randomly distributed data

GDPR: See General Data Protection Regulation
General Data Protection Regulation: Regulation introduced by

the European Union
Generalize: A model developed using the training set generalizes

well if its results are almost as good for the validation set

Gini measure: A measure of uncertainty
Gradient boosting: Boosting where a new predictor is fitted to the

errors of previous predictors.
Gradient descent algorithm: Calculates minimum by taking steps

down a multi-dimensional valley

Greedy action: See exploitation

Hans: German horse that seemed to be intelligent
Hard margin classification: SVM classification when there are no

violations
Hidden layer: A layer of neurons between the input layer and the

output layer
Hierarchical clustering: A way of building up clusters one obser-

vation at a time
Hyperbolic tangent function: An activation function sometimes

used in neural networks
Hyperparameter: Parameter used to train a model, but not to

make predictions
Hyperplane: A boundary separating an n-dimensional space into

two regions. The boundary has n-1 dimensions

Imbalanced data set: See class imbalance

Inertia: The within-cluster sum of squares when data is clustered

Information gain: Reduction in uncertainty
Input layer: The set of feature values that are input to a neural

network

Glossary 247

Instance: An observation

Iteration: A single update of weights during training
Kernel trick: Short cut when new features are created from exist-

ing features

k-means algorithm: An algorithm for finding clusters

L1 regularization: See Lasso regression

L2 regularization: See Ridge regression

Label: Value of a target

Landmark: A point in feature space used to create a new feature
Lasso regression: Regularization by adding the sum of the abso-

lute values of the weights to the objective function in a linear
regression

Layer: Term used to describe the inputs or the outputs or a set of
intermediate neurons in a neural network

Learning rate: Step size in a gradient descent algorithm
Learning rate decay: Reduction in learning rate as the gradient

descent algorithm proceeds
Lemmatization: Mapping a word to its root word. For example,

“better” could be mapped to “good”
LIME: A way of interpreting a black-box model for values of fea-

tures that are close to their current value
Linear regression: Regression where relationship between target

and features is assumed to be linear

Logistic regression: Version of regression used for classification
Long short-term memory: A way of testing the importance of val-

ues from previous observations and using them for updating as
appropriate

LSTM: See long short-term memory
Machine learning: Creating intelligence by learning from large

volumes of data

MAE: See mean absolute error
Maximum likelihood method: Determination of parameters by

maximizing the probability of observations occurring
Mean squared error: The arithmetic average of the squares of the

errors
Mini-batch stochastic gradient descent: Gradient descent where

a subset of data is used on each iteration
Min-max scaling: Feature scaling by subtracting the minimum

feature value and dividing by the difference between the maxi-
mum and the minimum feature values

248 Glossary

Momentum: The use of exponentially weighted moving averages
for gradients in gradient descent algorithms

Monte Carlo method: Updating Q-values in reinforcement learn-
ing by looking at total future rewards (possibly with discount-
ing)

MSE: See mean squared error
Multi-armed bandit problem: The problem of choosing which is

best of a number of levers that give rewards
Naïve Bayes classifier: A way of calculating conditional prob-

abilities (or conditional values for a numerical variable) if fea-
tures in a category are independent

Natural language processing: The application of machine learn-
ing to written or spoken words

Negative class: One of two groups into which data is divided
Neural network: Network of functions used to create a non-linear

model relating targets to features
Neuron: Node containing an intermediate value in a neural net-

work

Nim: Game to illustrate reinforcement learning

NLP: See natural language processing

Normalization: Scaling feature values to make them comparable
n-step bootstrapping: Updating Q-values in reinforcement learn-

ing by observing value after n time steps
Objective function: A function that is to be maximized or mini-

mized by an algorithm
One-hot encoding: Conversion of a categorical feature to numeri-

cal variables
Outliers: Observations that are distant from most other observa-

tions
Output layer: The set of targets that are output from a neural net-

work
Over-fitting: A model that fits noise in the training set and does

not generalize well to the validation set
Partial dependence plot: Plot of average value of target against a

feature when other features are allowed to take random values
Positive class: One of two groups into which data is divided
Precision: Percentage of positive predictions that turn out to be

positive in a classification
Principal components analysis: A way of replacing data on corre-

lated features with a smaller number of uncorrelated factors

Project Maven: Project between Google and U.S. Department of

Glossary 249

Defense which was canceled by Google

P-value: Probability in a linear regression of obtaining a t-statistic
as large as the one observed if the corresponding feature has no
explanatory power

Q-learning: Learning the optimal actions for different states in re-
inforcement learning

Q-value: The best value identified so far for a particular state and
action in reinforcement learning

Radial bias function: Function of the distance of an observation
from a landmark. Used to create a new feature to determine a
non-linear pathway in SVM

Random forest: Ensemble of decision trees

RBF: See radial bias function

Recall: See true positive rate
Receiver Operating Curve: Plot of true positive rate against false

positive rate in a classification
Receptive field: A rectangular array of nodes in the layer of a con-

volutional neural network
Recurrent neural network: Neural network where weights are

given to values calculated from the immediately preceding ob-
servation

Regularization: Simplification of a model that can avoid over-
fitting and reduce the magnitude of weights

Reinforcement learning: Developing a multistage decision strate-
gy in a changing environment

Relu: An activation function used in neural networks

Reward: Payoff in reinforcement learning
Ridge regression: Regularization by adding the sum of the

squared weights to objective function in a linear regression

RMSE: See root mean squared error

RNN: See recurrent neural network

ROC: See receiver operating curve
Root mean squared error: Square root of the mean squared er-

ror
R-squared statistic: Proportion of variance in target explained by

the features in a linear regression
Semi-supervised learning: Predicting the value of the target

when only part of the available training data includes values for
the target

Sensitivity: See True positive rate

250 Glossary

Sentiment analysis: Determining a group’s attitude (positive or
negative) to a service, product, organization, or topic

Shapley values: Values that determine the contributions of fea-
tures to a change in such a way that the total of the contribu-
tions equals the total change

Sigmoid function: S-shaped function with values between zero
and one used in logistic regression and neural networks

Silhouette method: A way of calculating the number of clusters
based on the distances between observations

SMOTE: Synthetic Minority Over-sampling Technique. A way of
overcoming class imbalance.

Soft margin classification: SVM classification when there are vio-
lations

Specificity: See true negative rate

Spoofing: Illegal attempt to manipulate the market

Standardization: See normalization

Stemming: Removing suffices such as “ing” from a word

Step size: See learning rate
Stop word: A word such as “the” or “a” that does not add much to

the meaning of text
Stopping rule: A rule for stopping learning in a neural network

when validation results worsen
Supervised learning: Predicting the value of one or more targets

Support vector: Observation at the edge of the pathway

SVM classification: Construction of a pathway to classify observa-
tions

SVM regression: Using a pathway to predict the value of a contin-
uous target variable

Target: A variable about which predictions are made

Tay: Program introduced by Microsoft for interacting with female
teenagers

Temporal difference learning: Updating Q-values in reinforce-
ment learning by observing the value at the next time step

Test set: Data set used to determine the accuracy of the model that
is finally chosen

Tokenization: Splitting text into its constituent words
Training set: Data set used to estimate parameters for models

that are tested
True negative rate: Percentage of negative outcomes correctly

predicted in a classification

Glossary 251

True positive rate: Percentage of positive outcomes correctly
predicted in a classification

t-statistic: Value of a parameter divided by its standard deviation
in a linear regression

Under-fitting: Using a model that does not capture all key rela-
tionships in the training set

Universal approximation theorem: A theorem showing that a
neural network with a single hidden layer can reproduce any
continuous function to arbitrary accuracy if it has enough neu-
rons

Unlabeled data: Data without target values

Unsupervised learning: Finding patterns in data, often by using
clustering

Validation set: Data set used to determine how well a model de-
rived from the training set works on different data

Weight: Coefficient of a feature value in a linear or logistic re-

gression or coefficient of value at one layer to determine

value at the next layer in a neural network

White-box model: Model that is easy to interpret

Z-score scaling: Feature scaling by subtracting the mean and di-
viding by the standard deviation

253

 Index

 References to items in Glossary of Terms are bolded

Accuracy ratio, 73-74, 243

Activation function, 122, 243

AdaBoost, 99, 243

Adam, 132, 243

Adaptive learning rate, 132, 243

Adversarial machine learning, 221-222, 243

Agglomerative clustering, 37-38, 243

AI, See artificial intelligence

Alexa, 165

AlphaGo, 159, 217, 243

ANN, See artificial neural network

Area under curve (AUC), 74-75, 89

Artificial neural network, See neural network

Artificial intelligence, 1-2, 243

At-the-money, 201

AUC, See area under curve

Autoencoder, 138-140, 243

Backpropagation, 130, 244

Bagging, 98-99, 244

Bag-of-words model, 170-176, 244

254 Index

Balanced data set, 69-70, 103-104

Bayes’ theorem, 16-19, 91, 244

Bayesian learning, 91-94, 244

Beautiful soup, 167

Bellman, Richard, 157

Bias, 50, 123, 186, 219-220, 244

Biases, human, 219-220

Bias-variance trade-off, 14, 244

Bid−ask spread, 210-211

Bigram, 172, 246

Black-box model, 192-193, 244

Black−Scholes-Merton model, 4, 133-136, 202-204

Boosting, 99, 244

Call option, 200

Cambridge Analytica, 218

Categorical feature, 15, 52-53, 62, 186, 244

Centroid, 26, 244

Chess, 2, 6

Class imbalance, 69-70, 103-104, 244

Classification model, 5, 67-76, 244

Classification threshold, 71-72, 244

Cluster center, 26

Cluster, choosing number of, 28-30

Clustering, 23-39, 244

CNN, See convolutional neural network

Coca Cola, 166

Collateral, 213

Computational linguistics, 165

Conditional probability, 16-19

Confusion matrix, 72-76, 89-90, 244

Contract law, 222

Convolutional neural network, 140-142, 244

Cost function, 123, 244

Country risk, 31-35

Credit decisions, See Lending Club example

Index 255

Curse of dimensionality, 31

Data cleaning, 14-16

Data privacy, 218

Data science, 2-3

Decision tree, 81-100, 176-177, 244

Decoding, 138, 244

Delta, 202-203, 208-211

Delta-neutral, 202

Deep Q-learning, 159, 244

Deep reinforcement learning, See deep Q-learning

Density-based clustering, 39, 245

Derivatives, 133-137, 161, 199-214

Dimensionality, curse of, 31

Discount factor, 153

Distance measure, 25-27, 31

Distribution-based clustering, 38, 245

Driverless cars, 6, 159, 220-222

Dropouts, 132, 245

Dummy variable, 52, 63, 67, 71, 245

Dummy variable trap, 53, 245

Duplicate observations, 15

Dynamic programming, 157-158, 245

Efficient markets hypothesis, 167

Elastic Net regression, 60-61, 66, 69, 245

Elbow method, 28-29, 245

Encoding, 138, 245

Ensemble learning, 98-99, 245

Entropy, 83-84, 245

Epoch, 131, 245

Ethics, 220-221

Euclidean distance, 25-26, 31

Exploitation, 148, 245

Exploration parameter, 148-152

Exploration, 148, 245

F1-score, See F-score

256 Index

Facial recognition, 219

Factor, 40-42

Factor loading, 40-41, 245

Factor score, 40-41, 245

False negative rate, 73-74, 90, 245

False positive rate, 73-74, 90, 245

Feature, 5, 20, 246

Feature map, 142, 246

Feature scaling, 24-25, 32-33, 246

FICO score, 71, 86-88, 246

Fraudulent transactions, 17, 212

F-score, 73-74, 246

Gap statistic, 30, 246

Gaussian radial bias function, 113

GDPR, See General Data Protection Regulation

General Data Protection Regulation, 184, 218, 246

Gillette, 166

Gini measure, 84-85, 246

GNMT, See Google Neural Machine Translation

Go, 2, 6, 159, 217

Google Neural Machine Translation, 2, 165, 180

Gradient boosting, 99, 246

Gradient descent algorithm, 50-51, 126-133, 246

Greedy action, See exploitation

Hans, 184-185, 221, 246

Hard margin classification, 103-109, 246

Healthcare, 159-160

Hedge funds, 1

Hedging, 161, 210-213

Hidden layer, 122, 125, 246

Hierarchical clustering, 37-38, 246

House price example, 62-66, 95-97, 115-116, 121-123

Hyperbolic tangent function, 122, 246

Hyperparameter, 55, 87-88, 246

Hypothesis testing, 19

Index 257

IDF, See inverse document frequency

IFRS 9, 212

Image recognition, 141-142

Imbalanced data set, See class imbalance

Implied volatility, 204-208

Industrial revolutions, 223-224

Inertia, 28-29, 34, 246

Information gain, 84-88, 246

Information retrieval, 177-178

Input layer, 122, 246

In-the-money, 201

Instance, 7, 20, 247

Interpretability, See model interpretability

Inverse document frequency, 177-178

Investing, 160-161, 166-167, 212

Iowa house prices, See house price example

Kernel trick, 114, 247

k-means algorithm, 25-35, 247

k-nearest-neighbors algorithm, 76

L1 regularization, 58, 131, 247

L2 regularization, 54, 131, 247

Label, 5-6, 20, 247

Labeled data, 5-6, 168-169

Landmark, 113, 247

Language translation, 2, 165

Laplace smoothing, 175

Lasso regression, 58-60, 64-66, 68, 187, 247

Layer,122, 247

Leaf, 87-88, 97

Learning rate, 128-132, 247

Learning rate decay, 132, 247

Legal issues, 222-223

Lemmatization, 170, 247

Lending Club example, 70-76, 85-90, 93-94, 123, 191, 212

LIME, 196, 247

258 Index

Linear model, 10-12

Linear regression, 47-66, 117, 185-189, 247

Linear regression, multiple features, 49-52

Linear regression, one feature, 48-49

Linkage, 45

Literary Digest, 219

Local minimum, 131-132

Logistic regression, 66-76, 176-177, 189-192, 247

Logit regression, See logistic regression

LSTM, See long short-term memory

Long short-term memory, 142-143, 247

mae, See mean absolute error

Maximum likelihood method, 68, 177, 247

Mean absolute error, 123, 135, 247

Mean squared error, 47-48, 64, 95-97, 123, 247

Mini-batch stochastic gradient descent, 131, 247

Min-max scaling, 24-25, 247

Missing data, 16

Model interpretability, 183-197

Momentum, 131, 248

Moneyness, 201

Monte Carlo method, 157-158, 248

mse, See mean squared error

Multi-armed bandit problem, 148-152, 248

Naïve Bayes classifier, 91-94, 172-176, 248

Natural language processing, 165-180, 212, 248

Natural language toolkit, 167, 169

Neural network, 121-144, 176-177, 206-208, 248

Neuron, 122, 125-126, 248

Nim, 154-159, 248

NLP, See natural language processing

NLTK, See natural language toolkit

Normalization, 24, 248

n-step bootstrapping, 159, 248

Noughts and crosses, See tic tac toe

Index 259

Odds against, 190-191

Odds on, 190-191

One-hot encoding, 52-53, 248

Order execution, 160, 212-213

Outliers, 15-16, 248

Out-of-sample testing, 6

Out-of-the-money, 201

Output layer, 122, 248

Over-fitting, 7, 9, 12-14, 248

Partial dependence plot, 193, 248

Pasting, 99

Pathway, 104-112, 114-116

PCA, See principal components analysis

Pension funds, 1

Pixel, 141

Polynomial model, 7-11, 51, 55-61

Portfolio management, 160-161, 166-167

Precision, 73-74, 248

Pre-processing, 169-170

Principal components analysis, 39-43, 138-140, 248

Private equity, 212

Project Maven, 220, 248

Put option, 200

P-value, 51-52, 249

Pythagoras’ theorem, 25

Python, 4

Q-learning, 159, 249

Quadratic model, 10-12

Quadratic programming, 109, 110

Q-value, 149-159, 249

Radial bias function, 113, 249

Random forest, 99, 249

RBF, See radial bias function

Recall, See true positive rate

Receiver operating curve, 74-75, 89-90, 249

260 Index

Receptive field, 141, 249

Recurrent neural network, 142-143, 249

Regularization, 53-61, 114-117, 131, 187, 249

Regression statistics, 51-52

Reinforcement learning, 6, 20, 147-162, 210-213, 249

Relu function, 122, 249

Renaissance Technologies, 167

Resource management, 159

Rewards, in reinforcement learning, 147, 152-153, 249

Ridge regression, 54-58, 64-65, 68, 187, 249

rmse, See root mean square error

RNN, See recurrent neural network

ROC, See receiver operating curve

Root mean square error, 7, 12, 97, 249

R-squared statistic, 51, 186, 249

Salary vs. age example, 7-13, 48-49, 55-61, 126-130

Scaling, See feature scaling

Screen scraping, See web scraping

Semi-supervised learning, 5-6, 20, 249

Sensitivity, See true positive rate

Sentiment analysis, 166-177, 250

Sequential decisions, 147-148

Shapley values, 193-195, 250

Sigmoid function, 67, 122-126, 250

Silhouette, average score, 30, 35

Silhouette method, 29-30, 250

Siri, 165

SMOTE, 69, 250

Spam, 168

Social Credit System, 220

Soft margin classification, 109-112, 250

Specificity, See true negative rate

Spoofing, 221-222, 250

Standardization, 24, 250

Stemming, 169-170, 250

Index 261

Stop word, 169, 250

Stopping rule, 133, 250

Strike price, 200

Supervised learning, 4-5, 20, 47-144, 250

Support vector, 105, 250

SVM classification, 103-114, 176-177, 250

SVM classification, linear, 103-112

SVM classification, non-linear, 112-114

SVM regression, 114-117, 250

Target, 5, 20, 250

Tay, 221, 250

Temporal difference learning, 157-159, 250

Term frequency, 177-178

Test set, 7, 12-13, 62, 70, 168, 250

TF, See term frequency

TF-IDF, 177-178

Threshold, 84-88, 95-96

Tic tac toe, 2

Tokenization, 169, 250

Trading strategy, 160-161

Traffic lights, 159

Training set, 7-14, 62, 70, 135, 168, 250

Transparency, 183-197, 221

Trigram, 172

Trolley problem, 221

True negative rate, 73-74, 90, 250

True positive rate, 73-74, 90, 251

t-statistic, 51-52, 186, 251

Under-fitting, 12-14, 251

Unigram, 172

United Airlines, 166

Universal approximation theorem, 124, 251

Unlabeled data, 5-6, 251

Unsupervised learning, 5, 20, 23-44, 251

Validation set, 7-14, 62, 70, 135, 168, 251

262 Index

Voice recognition, 141

Volatility, 201-208

Volatility feedback effect hypothesis, 206

Volatility surface, 203-208

Ward’s method, 37

Web data extraction, See web scraping

Web harvesting, See web scraping

Web scraping, 167

Weight, 50, 122, 251

White-box model, 185, 251

Word embedding, 179

Word sequences, 179-180

Word vector, 179

Z-score normalization, See Z-score scaling

Z-score scaling, 24-25, 33, 55-56, 64, 187, 206-207, 251

Zuckerberg, Mark, 218

	Chapter 1: Introduction
	Chapter 2: Unsupervised Learning
	Chapter 3: Linear and Logistic Regression
	Chapter 4: Decision Trees
	Chapter 5: SVMs
	Chapter 6: Neural Networks
	Chapter 7: Reinforcement Learning
	Chapter 8: Natural Language Processing
	Chapter 9: Model Interpretability
	Chapter 10: Applications in Finance
	Chapter 11: Issues for Society
	Answers to End of Chapter Questions
	Glossary of Terms
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2020-06-17T17:04:48+0000
	Preflight Ticket Signature

