Deep Learning

Neural networks became popular in the 1980s.

Lots of successes, hype, and great conferences: NeurlIPS,
Snowbird.

Then along came SVMs, Random Forests and Boosting in the
1990s, and Neural Networks took a back seat.

Deep Learning

Neural networks became popular in the 1980s.
Lots of successes, hype, and great conferences: NeurlIPS,

Snowbird.

Then along came SVMs, Random Forests and Boosting in the
1990s, and Neural Networks took a back seat.

Re-emerged around 2010 as Deep Learning.
By 2020s very dominant and successful.

Part of success due to vast improvements in computing power,
larger training sets, and software: Tensorflow and PyTorch.

Deep Learning

Neural networks became popular in the 1980s.
Lots of successes, hype, and great conferences: NeurlIPS,

Snowbird.

Then along came SVMs, Random Forests and Boosting in the
1990s, and Neural Networks took a back seat.

Re-emerged around 2010 as Deep Learning.
By 2020s very dominant and successful.

Part of success due to vast improvements in computing power,
larger training sets, and software: Tensorflow and PyTorch.

Much of the credit goes to three pioneers and
their students: Yann LeCun, Geoffrey Hinton
and Yoshua Bengio, who received the 2019
ACM Turing Award for their work in Neural
Networks.

Single Layer Neural Network

K
— 50 + Zk 1 5khk(X)
= Bo+ Zk 1 Brg(wio + ZJ | Wk X
Input Hidden Output
Layer Layer Layer

f(X)—Y

0

2.

Details

sigmoid
— RelLU

9(2)

00 02 04 06 08 1.0

o A; = hi(X) = glwgg + Z§:1 wy;X;) are called the
activations in the hidden layer.

® g(z) is called the activation function. Popular are the
sigmotd and rectified linear, shown in figure.

Details

sigmoid
— RelLU

9(2)
\

00 02 04 06 08 1.0

A = hi(X) = g(wgo + Z?Zl wy;X;) are called the
activations in the hidden layer.

g(z) is called the activation function. Popular are the
sigmotd and rectified linear, shown in figure.
Activation functions in hidden layers are typically
nonlinear, otherwise the model collapses to a linear model.
So the activations are like derived features — nonlinear
transformations of linear combinations of the features.

Details

sigmoid
— RelLU

9(2)
\

00 02 04 06 08 1.0

A = hi(X) = g(wgo + Z?Zl wy;X;) are called the
activations in the hidden layer.

g(z) is called the activation function. Popular are the
sigmotd and rectified linear, shown in figure.

Activation functions in hidden layers are typically
nonlinear, otherwise the model collapses to a linear model.
So the activations are like derived features — nonlinear
transformations of linear combinations of the features.
The model is fit by minimizing S°7" , (y; — f(z;))? (e.g. for
regression).

Example: MNIST Digits

011349567 %9 Handwritten digits

Ol 2% <=2 d 9 98y 98 grayscale images

OVRH145 67 8 9 60K train, 10K test images

0/ 23456759 Features are the 784 pixel
grayscale values € (0,255)
Labels are the digit class 0-9

® Goal: build a classifier to predict the image class.

® We build a two-layer network with 256 units at first layer,
128 units at second layer, and 10 units at output layer.

® Along with intercepts (called biases) there are 235,146
parameters (referred to as weights)

Hidden

Hidden
layer Lo

Output
layer

fl(X)% Yl

fg(X) — Yg

Details of Output Layer
® Let Z,, = Bmo + 25221 @MA?), m=20,1,...,9 be 10 linear
combinations of activations at second layer.

¢ Qutput activation function encodes the softmax function

€Zm

m(X) =Pr(Y =m|X) = ,
InX) = PR = m|X) = =g

Details of Output Layer

Let Z,, = Bmo + 25221 @MA?), m=20,1,...,9 be 10 linear
combinations of activations at second layer.

Output activation function encodes the softmax function

GZm

Z?:o eZt

fm(X) — PI‘(Y — m‘X) —

We fit the model by minimizing the negative multinomial
log-likelihood (or cross-entropy):

n 9
— Z Z Yim 10g(fm (73)).

1=1 m=0

Yim 18 1 if true class for observation ¢ is m, else 0 — i.e.
one-hot encoded.

Results

Method Test Error
Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

® Farly success for neural networks in the 1990s.
e With so many parameters, regularization is essential.

® Some details of regularization and fitting will come later.

Convolutional Neural Network — CNN
h’&‘! | 8‘-\« s & “_‘_7..\

i '.9'L - e "'-

® Major success story for classifying images.

® Shown are samples from CIFAR100 database. 32 x 32 color
natural images, with 100 classes.

® 50K training images, 10K test images.

Each image is a three-dimensional array or feature map:
32 x 32 x 3 array of 8bit numbers. The last dimension
represents the three color channels for red, green and blue.

How CNNs Work

TIGER

O 7] W [«

Ao] O] (9] =] | v
N\I/2
&

® The CNN builds up an image in a hierarchical fashion.

How CNNs Work

® The CNN builds up an image in a hierarchical fashion.

® Ldges and shapes are recognized and pieced together to
form more complex shapes, eventually assembling the
target 1mage.

How CNNs Work

The CNN builds up an image in a hierarchical fashion.

Edges and shapes are recognized and pieced together to
form more complex shapes, eventually assembling the
target 1mage.

This hierarchical construction is achieved using convolution
and pooling layers.

Convolution Filter

Input Image =

Convolution Filter = [& b] :

v 0

. Qe
TS

a+bB8+dy+ed ba+cB+ey+ o
Convolved Image = |da+eB8+gy+ho ea+ fB+ hy+i0
ga+hB+jy+ké ha+if+ky+1

The filter is itself an image, and represents a small shape,
edge etc.

We slide it around the input image, scoring for matches.
The scoring is done via dot-products, illustrated above.

If the subimage of the input image is similar to the filter,
the score is high, otherwise low.

The filters are learned during training.

Convolution Example

® The idea of convolution with a filter is to find common
patterns that occur in different parts of the image.

Convolution Example

® The idea of convolution with a filter is to find common
patterns that occur in different parts of the image.

® The two filters shown here highlight vertical and horizontal
stripes.

Convolution Example

® The idea of convolution with a filter is to find common
patterns that occur in different parts of the image.

® The two filters shown here highlight vertical and horizontal
stripes.

® The result of the convolution is a new feature map.

Convolution Example

The idea of convolution with a filter is to find common
patterns that occur in different parts of the image.

The two filters shown here highlight vertical and horizontal
stripes.

The result of the convolution is a new feature map.

Since images have three colors channels, the filter does as
well: one filter per channel, and dot-products are summed.

Convolution Example

The idea of convolution with a filter is to find common
patterns that occur in different parts of the image.

The two filters shown here highlight vertical and horizontal
stripes.

The result of the convolution is a new feature map.

Since images have three colors channels, the filter does as
well: one filter per channel, and dot-products are summed.
The weights in the filters are learned by the network.

Pooling

1 2 5 3]

3 0 1 2 3 O
Maxp0012134%[2 4]

1 1 2 0]

Each non-overlapping 2 x 2 block is replaced by its
maximum.

This sharpens the feature identification.
Allows for locational invariance.

Reduces the dimension by a factor of 4 — i.e. factor of 2 in
each dimension.

Architecture of a CNN

Architecture of a CNN

16
32
32 16 I r
) I-‘iillle--i---l
pool convolve
convolve

® Many convolve + pool layers.

Architecture of a CNN

pool convolve

convolve

® Many convolve + pool layers.

® Filters are typically small, e.g. each channel 3 x 3.

Architecture of a CNN

16
32
32 16 I r
) I-‘iillf7l--iI r-.'-IF
pool convolve
pool convolve . flatten
convolve

® Many convolve + pool layers.

® Filters are typically small, e.g. each channel 3 x 3.

® Each filter creates a new channel in convolution layer.

Architecture of a CNN

8
16
32 8
, . [[
r r
32
I pool
pool convolve convolve . flatten
convolve

® Many convolve + pool layers.

e Filters are typically small, e.g. each channel 3 x 3.
® Each filter creates a new channel in convolution layer.

® As pooling reduces size, the number of filters/channels is
typically increased.

Architecture of a CNN

16
32
32 16 I r
) Iriiilrffl-ii--
pool convolve
convolve

® Many convolve + pool layers.

pool

convolve . flatten

e Filters are typically small, e.g. each channel 3 x 3.
® Each filter creates a new channel in convolution layer.

® As pooling reduces size, the number of filters/channels is
typically increased.

e Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!

Using Pretrained Networks to Classify Images

Using Pretrained Networks to Classify Images

flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 | kite (raptor) 0.60 | fountain 0.35
spoonbill 0.17 | great grey owl 0.09 | nail 0.12
white stork 0.00 | robin 0.06 | hook 0.07

Lhasa Apso cat Cape weaver

Tibetan terrier 0.56 | Old English sheepdog 0.82 | jacamar 0.28
Lhasa 0.32 | Shih-Tzu 0.04 | macaw 0.12
cocker spaniel 0.03 | Persian cat 0.04 | robin 0.12

Here we use the 50-layer resnet50 network trained on the 1000-class
imacenet cornns to classifv some nhotooranhs.

Document Classification: IMDB Movie Reviews

The IMDB corpus consists of user-supplied movie ratings for a
large collection of movies. Each has been labeled for sentiment
as positive or negative. Here is the beginning of a negative

review:

This has to be one of the worst films of the 1990s. When my friends
& 1 were watching this film (being the target audience it was aimed at)
we just sat & watched the first half an hour with our jaws touching the
floor at how bad it really was. The rest of the time, everyone else in the
theater just started talking to each other, leaving or generally crying
into their popcorn ...

We have labeled training and test sets, each consisting of 25,000
reviews, and each balanced with regard to sentiment.

Document Classification: IMDB Movie Reviews

The IMDB corpus consists of user-supplied movie ratings for a
large collection of movies. Each has been labeled for sentiment
as positive or negative. Here is the beginning of a negative

review:

This has to be one of the worst films of the 1990s. When my friends
& 1 were watching this film (being the target audience it was aimed at)
we just sat & watched the first half an hour with our jaws touching the
floor at how bad it really was. The rest of the time, everyone else in the
theater just started talking to each other, leaving or generally crying
into their popcorn ...

We have labeled training and test sets, each consisting of 25,000
reviews, and each balanced with regard to sentiment.

We wish to build a classifier to predict the sentiment of a
review.

Featurization: Bag-of-Words

Documents have different lengths, and consist of sequences of
words. How do we create features X to characterize a
document?
® From a dictionary, identify the 10K most frequently
occurring words.
® (Create a binary vector of length p = 10K for each
document, and score a 1 in every position that the
corresponding word occurred.
e With n documents, we now have a n X p sparse feature
matrix X.
® We compare a lasso logistic regression model to a
two-hidden-layer neural network on the next slide. (No
convolutions here!)

Featurization: Bag-of-Words

Documents have different lengths, and consist of sequences of
words. How do we create features X to characterize a
document?

From a dictionary, identity the 10 K most frequently
occurring words.

Create a binary vector of length p = 10K for each
document, and score a 1 in every position that the
corresponding word occurred.

With n documents, we now have a n X p sparse feature
matrix X.

We compare a lasso logistic regression model to a
two-hidden-layer neural network on the next slide. (No
convolutions here!)

Bag-of-words are unigrams. We can instead use bigrams
(occurrences of adjacent word pairs), and in general
m-grams.

Lasso versus Neural Network — IMDB Reviews

Lasso Neural Net
o' - o' - o0 0 0o
T T e0°®*® oo ?
o e ¢
[]
[)

o | o | °

o o
> >
: g y
— 0 | = o _|
3 © 3 O
(&) (@]
< <

~ ~

o Py o

® train
= validation
© | = test © |
o o
| | | | | | | | |
4 6 8 10 12 5 10 15 20
- log(2) Epochs

e Simpler lasso logistic regression model works as well as
neural network in this case.

® glmnet was used to fit the lasso model, and is very effective
because it can exploit snarsitv in the X matrix.

Recurrent Neural Networks

Often data arise as sequences:
® Documents are sequences of words, and their relative
positions have meaning.
® Time-series such as weather data or financial indices.
® Recorded speech or music.
e Handwriting, such as doctor’s notes.
RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

Recurrent Neural Networks

Often data arise as sequences:
® Documents are sequences of words, and their relative
positions have meaning.
® Time-series such as weather data or financial indices.
® Recorded speech or music.
e Handwriting, such as doctor’s notes.
RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

® The feature for each observation is a sequence of vectors
X ={X1,Xo,..., X}

Recurrent Neural Networks

Often data arise as sequences:
® Documents are sequences of words, and their relative
positions have meaning.
® Time-series such as weather data or financial indices.
® Recorded speech or music.
e Handwriting, such as doctor’s notes.
RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

® The feature for each observation is a sequence of vectors
X ={X1,Xo,..., X}

® The target Y is often of the usual kind — e.g. a single
variable such as Sentiment, or a one-hot vector for
multiclass.

Recurrent Neural Networks

Often data arise as sequences:
® Documents are sequences of words, and their relative
positions have meaning.
® Time-series such as weather data or financial indices.
® Recorded speech or music.
e Handwriting, such as doctor’s notes.
RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

® The feature for each observation is a sequence of vectors
X ={X1,Xo,..., X}

® The target Y is often of the usual kind — e.g. a single
variable such as Sentiment, or a one-hot vector for
multiclass.

e However, Y can also be a sequence, such as the same
document in a different language.

Simple Recurrent Neural Network Architecture

OE Ol 02 03 OL-l

Oy

CTUB N [
A — A Ay A, T b A — A
X

w o e w

Xy X4 Xo X3 e X,

Simple Recurrent Neural Network Architecture

® The hidden layer is a sequence of vectors Ay, receiving as
input X, as well as Ay_1. Ay produces an output Oy.

Simple Recurrent Neural Network Architecture

® The hidden layer is a sequence of vectors Ay, receiving as
input X, as well as Ay_1. Ay produces an output Oy.

® The same weights W, U and B are used at each step in
the sequence — hence the term recurrent.

Simple Recurrent Neural Network Architecture

® The hidden layer is a sequence of vectors Ay, receiving as
input X, as well as Ay_1. Ay produces an output O,.

® The same weights W, U and B are used at each step in
the sequence — hence the term recurrent.

e The Ay sequence represents an evolving model for the
response that is updated as each element X, is processed.

RNN 1n Detail

Suppose Xy = (X1, X¢2, ..., Xyp) has p components, and
Ay = (An, Apa, ..., Ay) has K components. Then the
computation at the kth components of hidden unit A, is

p K
Ay, = g<wko +) wpXej+ Y uksAe—Ls)

7=1 s=1

K
Oy Bo+ > BrAun
k=1

Often we are concerned only with the prediction Oy, at the last
unit. For squared error loss, and n sequence/response pairs, we
would minimize

mn n

K P K
Z(yi_OiL)2 — Z (yi_ (504‘2 Bkg(ka‘f—Z wijiLj+Z uksai’L_l,s)))Q.
k=1 j=1 s=1

RNN and IMDB Reviews

The document feature is a sequence of words {W,}1. We

typically truncate/pad the documents to the same number
L of words (we use L = 500).

Each word W, is represented as a one-hot encoded binary
vector Xy, (dummy variable) of length 10K, with all zeros
and a single one in the position for that word in the
dictionary.

This results in an extremely sparse feature representation,

and would not work well.

Instead we use a lower-dimensional pretrained word
embedding matrix E (m x 10K, next slide).

This reduces the binary feature vector of length 10K to a

real feature vector of dimension m < 10K (e.g. m in the
low hundreds.)

Word Embedding

| |
|
| | |
|
|
e | |
|
T n
0] |
c
O = -
|
|
|
|
|
r——Tr 111" 1" —1® 1T 1T 1 1 1T 1T 17T 1T "1 1 ‘17 ‘1" "’
w0 Y 0 B W > 0 ¥ - 0 = c© O 0w o0 = >
= = £ 0o £ o = & 9 ><Dq_>_c§t'cmff5
¢ 8°2FES 2 FipEEEEEE
= »
O
©
I I I I I N S S R E— I I I I I
- 1
o | | |
€
LL] | [| [|

this is one of the best films actually the best I have ever seen the film

starts one fall day - - -.

Embeddings are pretrained on very large corpora of documents,
using methods similar to principal components. word2vec and

GloVe are popular.

RNN on IMDB Reviews

e After a lot of work, the results are a disappointing 76%
accuracy.

RNN on IMDB Reviews

e After a lot of work, the results are a disappointing 76%
accuracy.

® We then fit a more exotic RNN than the one displayed — a
LSTM with long and short term memory. Here Ay receives
input from Ay;_1 (short term memory) as well as from a
version that reaches further back in time (long term
memory). Now we get 87% accuracy, slightly less than the
88% achieved by glmnet.

RNN on IMDB Reviews

e After a lot of work, the results are a disappointing 76%
accuracy.

® We then fit a more exotic RNN than the one displayed — a
LSTM with long and short term memory. Here Ay receives
input from Ay;_1 (short term memory) as well as from a
version that reaches further back in time (long term
memory). Now we get 87% accuracy, slightly less than the
88% achieved by glmnet.

® These data have been used as a benchmark for new RNN
architectures. The best reported result found at the time of
writing (2020) was around 95%. We point to a leaderboard
in Section 10.5.1.

Dow Jones Return Log(Trading Volume)

Log(Volatility)

1.0

0.5

0.00 0.04 -1.0 0.0

-0.04

-8

~11 -9

-13

Time Series Forecasting

1965 1970 1975 1980

1985

New-York Stock Exchange Data

Shown in previous slide are three daily time series for the period
December 3, 1962 to December 31, 1986 (6,051 trading days):

® Log trading volume. This is the fraction of all
outstanding shares that are traded on that day, relative to
a 100-day moving average of past turnover, on the log scale.

® Dow Jones return. This is the difference between the log
of the Dow Jones Industrial Index on consecutive trading
days.

® Log volatility. This is based on the absolute values of

daily price movements.

Goal: predict Log trading volume tomorrow, given its
observed values up to today, as well as those of Dow Jones
return and Log volatility.

Autocorrelation

Log(Trading Volume)

c N

S

O o

S o 7]

L

S p—

8 < |

© o

i ||| HHHHH

: 1

2 o | NEREE

<Egl [[[[[[[
0 5 10 15 20 05 30 35

Lag

® The autocorrelation at lag £ is the correlation of all pairs
(v, vi_g) that are £ trading days apart.

Autocorrelation

Log(Trading Volume)

c N

S

O o

S o 7]

L

S p—

8 < |

© o

i ||| HHHHH

: 1

2 o | NEREE

<Egl [[[[[[[
0 5 10 15 20 05 30 35

Lag

® The autocorrelation at lag £ is the correlation of all pairs
(v, vi_g) that are £ trading days apart.

® These sizable correlations give us confidence that past
values will be helpful in predicting the future.

Autocorrelation

Log(Trading Volume)

0.8

0.4

Autocorrelation Function

I
0 5

0.0

ST,
| | | | | |
10 15 20 25 30 35
Lag

® The autocorrelation at lag £ is the correlation of all pairs
(v, vi_g) that are £ trading days apart.

® These sizable correlations give us confidence that past
values will be helpful in predicting the future.

® This is a curious prediction problem: the response v; is also
a feature v;_p!

RNN Forecaster

We only have one series of data! How do we set up for an RNN?

We extract many short mini-series of input sequences
X =1{X1,Xs,..., X1} with a predefined length L known as the
lag:

Ut— L Ut—L+1 Vt—1
Xi=|r—pr|,Xo= 741 |, Xp=|m-1], and Y = v;.
Zt—1, Zt—L+1 Zt—1

Since T' = 6,051, with L = 5 we can create 6,046 such (X,Y)
pairs.

We use the first 4,281 as training data, and the following 1, 770
as test data. We fit an RNN with 12 hidden units per lag step
(i.e. per Ay.)

RNN Results for NYSE Data

Test Period: Observed and Predicted

log(Trading Volume)
0.0 05 1.0
| | | |
<
. — .
é—

-1.0

1980 1982 1984 1986

Year
Figure shows predictions and truth for test period.
R? = 0.42 for RNN

R? = 0.18 for straw man — use yesterday’s value of Log
trading volume to predict that of today.

Autoregression Forecaster

The RNN forecaster is similar in structure to a traditional
autoregression procedure.

VL+1 I vy wvp—1 -+ v

VL+2 I vpyr v o0 w2

y = VL+3 M = 1 vp4eo vp4r - U3
U 1 vpy wvp_9 .-+ UP_L

Fit an OLS regression of y on M, giving

Uy = BO + Blvt—l + 82’075—2 + -+ BLUt—L-

Known as an order-L autoregression model or AR(L).
For the NYSE data we can include lagged versions of DJ_return
and log volatility in matrix M, resulting in 3L 4+ 1 columns.

Autoregression Results for NYSE Data

R? = 0.41 for AR(5) model (16 parameters)
R? = 0.42 for RNN model (205 parameters)
R? = 0.42 for AR(5) model fit by neural network.

R? = 0.46 for all models if we include day_of_week of day being
predicted.

Summary of RNNs

We have presented the simplest of RNNs. Many more
complex variations exist.

One variation treats the sequence as a one-dimensional
image, and uses CNNs for fitting. For example, a sequence
of words using an embedding representation can be viewed
as an image, and the CNN convolves by sliding a
convolutional filter along the sequence.

Can have additional hidden layers, where each hidden layer
1S a sequence, and treats the previous hidden layer as an
input sequence.

Can have output also be a sequence, and input and output
share the hidden units. So called seq2seq learning are used
for language translation.

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

e RNNs have had big wins in speech modeling, language
translation, and forecasting.

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

e RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

e RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?
e QOften the big successes occur when the signal to noise ratio
is high — e.g. image recognition and language translation.
Datasets are large, and overfitting is not a big problem.

When to Use Deep Learning

® CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

e RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?
e QOften the big successes occur when the signal to noise ratio
is high — e.g. image recognition and language translation.

Datasets are large, and overfitting is not a big problem.
® For noisier data, simpler models can often work better.
® On the NYSE data, the AR(5) model is much simpler than a
RNN, and performed as well.
® On the IMDB review data, the linear model fit by glmnet did
as well as the neural network, and better than the RNN.

Fitting Neural Networks

@

Input Hidden Output
Layer Layer Layer
Aq
B— nimize 3" (s — £(z0))
minimize — Z Y; — L
As {wp}E, 8 2 — ’
X2 \ =
As X =Y where
X3 /
Ay K D
X4 f(fl?z') — 50+Z Brg (wk0+z ’wkjl’z'j)-
I Ay k—1 j=1

Fitting Neural Networks

@

Input Hidden Output
Layer Layer Layer
A
Xl / o . . 1 = 2
minimize — Z(y@ — f(flfz)) 9
Az {wk}{<7 p 2 i=1
¥, \ s
As X =Y wwhere
= /
Ay K P
X4 f(xz) — ﬁO‘FZ Bkg ka"‘Z wijm)
I Ay k—1 j=1

This problem is difficult because the objective is non-conuverx.

Fitting Neural Networks

Input Hidden Output
Layer Layer Layer
A
Xl / o . . 1 = 2
minimize — Z(yz — f(l“z)))
Az {wk}{<7 p 2 i=1
¥, \ =
As =Y where
= /
Ay K P
X4 f(xz) — 50‘|‘Z Bkg ka"—Z wijz]>
I Ay k—1 j=1

This problem is difficult because the objective is non-conuverx.

Despite this, effective algorithms have evolved that can
optimize complex neural network problems efficiently.

Non Convex Functions and Gradient Descent
Let R(0) = 5> i1 (yi — fo(xi))? with 0 = ({wi}f, B).

2 -
R(6°
YRt
N °
R(6%)
[]
0 1 2 .7
0 0 0 0
© 1 1 1 1
| T T T T
-1.0 -0.5 0.0 0.5 1.0
0

1. Start with a guess Y for all the parameters in 6, and set ¢t = 0.

2. Iterate until the objective R(6) fails to decrease:
(a) Find a vector § that reflects a small change in 0, such that
0!t = 0 + § reduces the objective; i.e. R(0'T1) < R(6?).
(b) Set t <t + 1.

Gradient Descent Continued

® [n this simple example we reached the global minimum.

o If we had started a little to the left of #° we would have
gone in the other direction, and ended up in a local

e Although 6 is multi-dimensional, we have depicted the
process as one-dimensional. It is much harder to identify
whether one is in a local minimum in high dimensions.

How to find a direction ¢ that points downhill? We compute
the gradient vector

OR(0)
00 o=t
i.e. the vector of partial derivatives at the current guess 6°.
The gradient points uphill, so our update is § = —pVR(6) or
Ot 0" — pVR(6Y),

where p is the learning rate (typically small, e.g. p = 0.001.

VR(0") =

Gradients and Backpropagation

R(0) = >, Ri(0) is a sum, so gradient is sum of gradients.

2

K p
R;(0) = & (yi— folx:))* = %(yz‘—ﬁo—z5kg(wko+zwkﬂij))
k=1 J=1

For ease of notation, let z;r = wi + Z§:1 Wi T

Backpropagation uses the chain rule for differentiation:

OBk Ofe(z) 9B
= —(yi — fo(wi)) - 9(2ik).
Owr; Ofp(xi) 0g(zik) Ozip Owy,

= (i — fo(zi) - Br - 9'(zik) - ij

Tricks of the Trade

e Slow learning. Gradient descent is slow, and a small
learning rate p slows it even further. With early stopping,
this is a form of regularization.

Tricks of the Trade

e Slow learning. Gradient descent is slow, and a small
learning rate p slows it even further. With early stopping,
this is a form of regularization.

® Stochastic gradient descent. Rather than compute the
ogradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

Tricks of the Trade

e Slow learning. Gradient descent is slow, and a small
learning rate p slows it even further. With early stopping,
this is a form of regularization.

® Stochastic gradient descent. Rather than compute the
ogradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

® An epoch is a count of iterations and amounts to the
number of minibatch updates such that n samples in total
have been processed; i.e. 60K /128 ~ 469 for MNIST.

Tricks of the Trade

Slow learning. Gradient descent is slow, and a small
learning rate p slows it even further. With early stopping,
this is a form of regularization.

Stochastic gradient descent. Rather than compute the
gradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,

we use minibatches of 128 observations.

An epoch is a count of iterations and amounts to the

number of minibatch updates such that n samples in total
have been processed; i.e. 60K /128 ~ 469 for MNIST.

Regularization. Ridge and lasso regularization can be used
to shrink the weights at each layer. Two other popular
torms of regularization are dropout and augmentation,
discussed next.

Dropout Learning

e At each SGD update, randomly remove units with
probability ¢, and scale up the weights of those retained by
1/(1 — ¢) to compensate.

Dropout Learning

e At each SGD update, randomly remove units with
probability ¢, and scale up the weights of those retained by
1/(1 — ¢) to compensate.

® In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

Dropout Learning

e At each SGD update, randomly remove units with
probability ¢, and scale up the weights of those retained by
1/(1 — ¢) to compensate.

® In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

® As in ridge, the other units stand in for those temporarily
removed, and their weights are drawn closer together.

Dropout Learning

At each SGD update, randomly remove units with
probability ¢, and scale up the weights of those retained by
1/(1 — ¢) to compensate.

In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

As in ridge, the other units stand in for those temporarily
removed, and their weights are drawn closer together.

Similar to randomly omitting variables when growing trees
in random forests (Chapter 8).

Ridge and Data Augmentation

c\l_

Xz

® Make many copies of each (z;,¥;) and add a small amount
of Gaussian noise to the x; — a little cloud around each
observation — but leave the copies of y; alone!

® This makes the fit robust to small perturbations in x;, and
is equivalent to ridge regularization in an OLS setting.

Data Augmentation on the Fly

e Data augmentation is especially effective with SGD, here
demonstrated for a CNN and image classification.

Data Augmentation on the Fly

e Data augmentation is especially effective with SGD, here
demonstrated for a CNN and image classification.

e Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

Data Augmentation on the Fly

e Data augmentation is especially effective with SGD, here
demonstrated for a CNN and image classification.

e Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

® The label is left unchanged — in each case still tiger.

Data Augmentation on the Fly

Data augmentation is especially effective with SGD, here
demonstrated for a CNN and image classification.

Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

The label is left unchanged — in each case still tiger.

Improves performance of CNN and is similar to ridge.

Double Descent

¢ With neural networks, it seems better to have too many
hidden units than too few.

Double Descent

¢ With neural networks, it seems better to have too many
hidden units than too few.

¢ Likewise more hidden layers better than few.

Double Descent

¢ With neural networks, it seems better to have too many
hidden units than too few.

¢ Likewise more hidden layers better than few.

¢ Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

Double Descent

With neural networks, it seems better to have too many
hidden units than too few.

Likewise more hidden layers better than few.

Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
error.

Double Descent

¢ With neural networks, it seems better to have too many
hidden units than too few.

¢ Likewise more hidden layers better than few.

¢ Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

® Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
error.

What happened to overfitting and the usual bias-variance
trade-oft?

Belkin, Hsu, Ma and Mandal (arXiv 2018) Reconciling Modern Machine Learning
and the Bias-Variance Trade-off.

Simulation

y = sin(x) + € with = ~ U[-5, 5] and ¢ Gaussian with
S.D. =0.3.

Training set n = 20, test set very large (10K).

We fit a natural spline to the data (Section 7.4) with d
degrees of freedom — i.e. a linear regression onto d basis
functions: g; = B1 V1 (;) + B2Na(wi) + - - - + BaNa(w:).
When d = 20 we fit the training data exactly, and get all
residuals equal to zero.

When d > 20, we still fit the data exactly, but the solution
is not unique. Among the zero-residual solutions, we pick
the one with minimum norm — i.e. the zero-residual

solution with smallest Z;i:l 332

The Double-Descent Error Curve
g 7] Training Error
Test Error
; ; 1|O 2|O 5|0

Degrees of Freedom

® When d < 20, model is OLS, and we see usual bias-variance
trade-off

e When d > 20, we revert to minimum-norm. As d increases
above 20, Z?Zl 332 decreases since it 1s easier to achieve
zero error, and hence less wiggly solutions.

Less Wiggly Solutions

8 Degrees of Freedom 20 Degrees of Freedom

o — o -
Al — Al —
o o
— — 0\
O >0
o) o
o @x % . o o\\o /OO .
- %D\‘O, T \G
o© 0
A A
| |
N B | ILL T I 1 R N B | Ll I R 1
I I I I I I I I I I
-4 -2 0 2 4 -4 -2 0 2 4
42 Degrees of Freedom 80 Degrees of Freedom
(o9 (op]
Al Al
- - o2 ® 3 ~ 50\ 1 /Re
o NK //Oo ° o o //)o N0
~— Yo K ~— \KG/
| 50 | 5o g%’
Al (a\|
| |
? L1 | | ILL T I 1 R ? 11| | Ll I R 1
I I I I I I I I I I
-4 -2 0 2 4 -4 -2 0 2 4

To achieve a zero-residual solution with d = 20 is a real stretch!

Easier for larger d.

Some Facts

® In a wide linear model (p > n) fit by least squares, SGD
with a small step size leads to a minimum norm
zero-residual solution.

Some Facts

® In a wide linear model (p > n) fit by least squares, SGD
with a small step size leads to a minimum norm
zero-residual solution.

® Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

Some Facts

® In a wide linear model (p > n) fit by least squares, SGD
with a small step size leads to a minimum norm
zero-residual solution.

® Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

e By analogy, deep and wide neural networks fit by SGD
down to zero training error often give good solutions that
generalize well.

Some Facts

In a wide linear model (p > n) fit by least squares, SGD
with a small step size leads to a minimum norm
zero-residual solution.

Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

By analogy, deep and wide neural networks fit by SGD
down to zero training error often give good solutions that
generalize well.

In particular cases with high signal-to-noise ratio — e.g.
image recognition — are less prone to overfitting; the
zero-error solution is mostly signal!

