
Deep Learning
Neural networks became popular in the 1980s.
Lots of successes, hype, and great conferences: NeurIPS,
Snowbird.

Then along came SVMs, Random Forests and Boosting in the
1990s, and Neural Networks took a back seat.

Re-emerged around 2010 as Deep Learning.

By 2020s very dominant and successful.

Part of success due to vast improvements in computing power,
larger training sets, and software: Tensorflow and PyTorch.

Much of the credit goes to three pioneers and
their students: Yann LeCun, Geo↵rey Hinton
and Yoshua Bengio, who received the 2019
ACM Turing Award for their work in Neural
Networks.

1 / 46

Deep Learning
Neural networks became popular in the 1980s.
Lots of successes, hype, and great conferences: NeurIPS,
Snowbird.

Then along came SVMs, Random Forests and Boosting in the
1990s, and Neural Networks took a back seat.

Re-emerged around 2010 as Deep Learning.

By 2020s very dominant and successful.

Part of success due to vast improvements in computing power,
larger training sets, and software: Tensorflow and PyTorch.

Much of the credit goes to three pioneers and
their students: Yann LeCun, Geo↵rey Hinton
and Yoshua Bengio, who received the 2019
ACM Turing Award for their work in Neural
Networks.

1 / 46

Deep Learning
Neural networks became popular in the 1980s.
Lots of successes, hype, and great conferences: NeurIPS,
Snowbird.

Then along came SVMs, Random Forests and Boosting in the
1990s, and Neural Networks took a back seat.

Re-emerged around 2010 as Deep Learning.

By 2020s very dominant and successful.

Part of success due to vast improvements in computing power,
larger training sets, and software: Tensorflow and PyTorch.

Much of the credit goes to three pioneers and
their students: Yann LeCun, Geo↵rey Hinton
and Yoshua Bengio, who received the 2019
ACM Turing Award for their work in Neural
Networks.

1 / 46

Single Layer Neural Network

f(X) = �0 +
PK

k=1 �khk(X)

= �0 +
PK

k=1 �kg(wk0 +
Pp

j=1wkjXj).

X1

X2

X3

X4

A1

A2

A3

A4

A5

f(X) Y

Hidden
Layer

Input
Layer

Output
Layer

2 / 46

Details

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

• Ak = hk(X) = g(wk0 +
Pp

j=1wkjXj) are called the
activations in the hidden layer.

• g(z) is called the activation function. Popular are the
sigmoid and rectified linear, shown in figure.

• Activation functions in hidden layers are typically
nonlinear, otherwise the model collapses to a linear model.

• So the activations are like derived features — nonlinear
transformations of linear combinations of the features.

• The model is fit by minimizing
Pn

i=1 (yi � f(xi))
2 (e.g. for

regression).

3 / 46

Details

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

• Ak = hk(X) = g(wk0 +
Pp

j=1wkjXj) are called the
activations in the hidden layer.

• g(z) is called the activation function. Popular are the
sigmoid and rectified linear, shown in figure.

• Activation functions in hidden layers are typically
nonlinear, otherwise the model collapses to a linear model.

• So the activations are like derived features — nonlinear
transformations of linear combinations of the features.

• The model is fit by minimizing
Pn

i=1 (yi � f(xi))
2 (e.g. for

regression).

3 / 46

Details

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

• Ak = hk(X) = g(wk0 +
Pp

j=1wkjXj) are called the
activations in the hidden layer.

• g(z) is called the activation function. Popular are the
sigmoid and rectified linear, shown in figure.

• Activation functions in hidden layers are typically
nonlinear, otherwise the model collapses to a linear model.

• So the activations are like derived features — nonlinear
transformations of linear combinations of the features.

• The model is fit by minimizing
Pn

i=1 (yi � f(xi))
2 (e.g. for

regression).
3 / 46

Example: MNIST Digits

Handwritten digits
28⇥ 28 grayscale images
60K train, 10K test images
Features are the 784 pixel
grayscale values 2 (0, 255)
Labels are the digit class 0–9

• Goal: build a classifier to predict the image class.

• We build a two-layer network with 256 units at first layer,
128 units at second layer, and 10 units at output layer.

• Along with intercepts (called biases) there are 235,146
parameters (referred to as weights)

4 / 46

X1

X2

X3

X4

X5

X6

.

.

.

Xp

A(1)
1

A(1)
2

A(1)
3

A(1)
4

.

.

.

A(1)
K1

A(2)
1

A(2)
2

A(2)
3

.

.

.

A(2)
K2

f0(X) Y0

f1(X) Y1

.

.

.
.
.
.

f9(X) Y9

Hidden
layer L2

Hidden
layer L1

Input
layer

Output
layer

W1

W2

B

5 / 46

Details of Output Layer

• Let Zm = �m0 +
PK2

`=1 �m`A
(2)
` , m = 0, 1, . . . , 9 be 10 linear

combinations of activations at second layer.

• Output activation function encodes the softmax function

fm(X) = Pr(Y = m|X) =
e
Zm

P9
`=0 e

Z`
.

• We fit the model by minimizing the negative multinomial
log-likelihood (or cross-entropy):

�
nX

i=1

9X

m=0

yim log(fm(xi)).

• yim is 1 if true class for observation i is m, else 0 — i.e.
one-hot encoded.

6 / 46

Details of Output Layer

• Let Zm = �m0 +
PK2

`=1 �m`A
(2)
` , m = 0, 1, . . . , 9 be 10 linear

combinations of activations at second layer.

• Output activation function encodes the softmax function

fm(X) = Pr(Y = m|X) =
e
Zm

P9
`=0 e

Z`
.

• We fit the model by minimizing the negative multinomial
log-likelihood (or cross-entropy):

�
nX

i=1

9X

m=0

yim log(fm(xi)).

• yim is 1 if true class for observation i is m, else 0 — i.e.
one-hot encoded.

6 / 46

Results

Method Test Error

Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

• Early success for neural networks in the 1990s.

• With so many parameters, regularization is essential.

• Some details of regularization and fitting will come later.

• Very overworked problem — best reported rates are
< 0.5%!

• Human error rate is reported to be around 0.2%, or 20 of
the 10K test images.

7 / 46

Convolutional Neural Network — CNN

• Major success story for classifying images.

• Shown are samples from CIFAR100 database. 32⇥ 32 color
natural images, with 100 classes.

• 50K training images, 10K test images.

Each image is a three-dimensional array or feature map:

32⇥ 32⇥ 3 array of 8-bit numbers. The last dimension
represents the three color channels for red, green and blue.

8 / 46

How CNNs Work

• The CNN builds up an image in a hierarchical fashion.

• Edges and shapes are recognized and pieced together to
form more complex shapes, eventually assembling the
target image.

• This hierarchical construction is achieved using convolution

and pooling layers.

9 / 46

How CNNs Work

• The CNN builds up an image in a hierarchical fashion.
• Edges and shapes are recognized and pieced together to
form more complex shapes, eventually assembling the
target image.

• This hierarchical construction is achieved using convolution

and pooling layers.

9 / 46

How CNNs Work

• The CNN builds up an image in a hierarchical fashion.
• Edges and shapes are recognized and pieced together to
form more complex shapes, eventually assembling the
target image.

• This hierarchical construction is achieved using convolution

and pooling layers.

9 / 46

Convolution Filter

Input Image =

2

664

a b c

d e f

g h i

j k l

3

775 Convolution Filter =


↵ �

� �

�
.

Convolved Image =

2

4
a↵+ b� + d� + e� b↵+ c� + e� + f�

d↵+ e� + g� + h� e↵+ f� + h� + i�

g↵+ h� + j� + k� h↵+ i� + k� + l�

3

5

• The filter is itself an image, and represents a small shape,
edge etc.

• We slide it around the input image, scoring for matches.

• The scoring is done via dot-products, illustrated above.

• If the subimage of the input image is similar to the filter,
the score is high, otherwise low.

• The filters are learned during training.
10 / 46

Convolution Example

• The idea of convolution with a filter is to find common
patterns that occur in di↵erent parts of the image.

• The two filters shown here highlight vertical and horizontal
stripes.

• The result of the convolution is a new feature map.
• Since images have three colors channels, the filter does as
well: one filter per channel, and dot-products are summed.

• The weights in the filters are learned by the network.

11 / 46

Convolution Example

• The idea of convolution with a filter is to find common
patterns that occur in di↵erent parts of the image.

• The two filters shown here highlight vertical and horizontal
stripes.

• The result of the convolution is a new feature map.
• Since images have three colors channels, the filter does as
well: one filter per channel, and dot-products are summed.

• The weights in the filters are learned by the network.

11 / 46

Convolution Example

• The idea of convolution with a filter is to find common
patterns that occur in di↵erent parts of the image.

• The two filters shown here highlight vertical and horizontal
stripes.

• The result of the convolution is a new feature map.

• Since images have three colors channels, the filter does as
well: one filter per channel, and dot-products are summed.

• The weights in the filters are learned by the network.

11 / 46

Convolution Example

• The idea of convolution with a filter is to find common
patterns that occur in di↵erent parts of the image.

• The two filters shown here highlight vertical and horizontal
stripes.

• The result of the convolution is a new feature map.
• Since images have three colors channels, the filter does as
well: one filter per channel, and dot-products are summed.

• The weights in the filters are learned by the network.

11 / 46

Convolution Example

• The idea of convolution with a filter is to find common
patterns that occur in di↵erent parts of the image.

• The two filters shown here highlight vertical and horizontal
stripes.

• The result of the convolution is a new feature map.
• Since images have three colors channels, the filter does as
well: one filter per channel, and dot-products are summed.

• The weights in the filters are learned by the network.
11 / 46

Pooling

Max pool

2

664

1 2 5 3
3 0 1 2
2 1 3 4
1 1 2 0

3

775!

3 5
2 4

�

• Each non-overlapping 2⇥ 2 block is replaced by its
maximum.

• This sharpens the feature identification.

• Allows for locational invariance.

• Reduces the dimension by a factor of 4 — i.e. factor of 2 in
each dimension.

12 / 46

Architecture of a CNN

32
1632

8

16
4

32 2

500

100

convolve

convolveconvolve
poolpool

pool flatten

8

• Many convolve + pool layers.

• Filters are typically small, e.g. each channel 3⇥ 3.

• Each filter creates a new channel in convolution layer.

• As pooling reduces size, the number of filters/channels is
typically increased.

• Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!

13 / 46

Architecture of a CNN

32
1632

8

16
4

32 2

500

100

convolve

convolveconvolve
poolpool

pool flatten

8

• Many convolve + pool layers.

• Filters are typically small, e.g. each channel 3⇥ 3.

• Each filter creates a new channel in convolution layer.

• As pooling reduces size, the number of filters/channels is
typically increased.

• Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!

13 / 46

Architecture of a CNN

32
1632

8

16
4

32 2

500

100

convolve

convolveconvolve
poolpool

pool flatten

8

• Many convolve + pool layers.

• Filters are typically small, e.g. each channel 3⇥ 3.

• Each filter creates a new channel in convolution layer.

• As pooling reduces size, the number of filters/channels is
typically increased.

• Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!

13 / 46

Architecture of a CNN

32
1632

8

16
4

32 2

500

100

convolve

convolveconvolve
poolpool

pool flatten

8

• Many convolve + pool layers.

• Filters are typically small, e.g. each channel 3⇥ 3.

• Each filter creates a new channel in convolution layer.

• As pooling reduces size, the number of filters/channels is
typically increased.

• Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!

13 / 46

Architecture of a CNN

32
1632

8

16
4

32 2

500

100

convolve

convolveconvolve
poolpool

pool flatten

8

• Many convolve + pool layers.

• Filters are typically small, e.g. each channel 3⇥ 3.

• Each filter creates a new channel in convolution layer.

• As pooling reduces size, the number of filters/channels is
typically increased.

• Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!

13 / 46

Architecture of a CNN

32
1632

8

16
4

32 2

500

100

convolve

convolveconvolve
poolpool

pool flatten

8

• Many convolve + pool layers.

• Filters are typically small, e.g. each channel 3⇥ 3.

• Each filter creates a new channel in convolution layer.

• As pooling reduces size, the number of filters/channels is
typically increased.

• Number of layers can be very large. E.g. resnet50 trained
on imagenet 1000-class image data base has 50 layers!

13 / 46

Using Pretrained Networks to Classify Images

flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 kite (raptor) 0.60 fountain 0.35
spoonbill 0.17 great grey owl 0.09 nail 0.12
white stork 0.00 robin 0.06 hook 0.07

Lhasa Apso cat Cape weaver
Tibetan terrier 0.56 Old English sheepdog 0.82 jacamar 0.28
Lhasa 0.32 Shih-Tzu 0.04 macaw 0.12
cocker spaniel 0.03 Persian cat 0.04 robin 0.12

Here we use the 50-layer resnet50 network trained on the 1000-class
imagenet corpus to classify some photographs.

14 / 46

Using Pretrained Networks to Classify Images

flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 kite (raptor) 0.60 fountain 0.35
spoonbill 0.17 great grey owl 0.09 nail 0.12
white stork 0.00 robin 0.06 hook 0.07

Lhasa Apso cat Cape weaver
Tibetan terrier 0.56 Old English sheepdog 0.82 jacamar 0.28
Lhasa 0.32 Shih-Tzu 0.04 macaw 0.12
cocker spaniel 0.03 Persian cat 0.04 robin 0.12

Here we use the 50-layer resnet50 network trained on the 1000-class
imagenet corpus to classify some photographs.

14 / 46

Using Pretrained Networks to Classify Images

flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 kite (raptor) 0.60 fountain 0.35
spoonbill 0.17 great grey owl 0.09 nail 0.12
white stork 0.00 robin 0.06 hook 0.07

Lhasa Apso cat Cape weaver
Tibetan terrier 0.56 Old English sheepdog 0.82 jacamar 0.28
Lhasa 0.32 Shih-Tzu 0.04 macaw 0.12
cocker spaniel 0.03 Persian cat 0.04 robin 0.12

Here we use the 50-layer resnet50 network trained on the 1000-class
imagenet corpus to classify some photographs. 14 / 46

Using Pretrained Networks to Classify Images

flamingo Cooper’s hawk Cooper’s hawk
flamingo 0.83 kite (raptor) 0.60 fountain 0.35
spoonbill 0.17 great grey owl 0.09 nail 0.12
white stork 0.00 robin 0.06 hook 0.07

Lhasa Apso cat Cape weaver
Tibetan terrier 0.56 Old English sheepdog 0.82 jacamar 0.28
Lhasa 0.32 Shih-Tzu 0.04 macaw 0.12
cocker spaniel 0.03 Persian cat 0.04 robin 0.12

Here we use the 50-layer resnet50 network trained on the 1000-class
imagenet corpus to classify some photographs. 14 / 46

Document Classification: IMDB Movie Reviews

The IMDB corpus consists of user-supplied movie ratings for a
large collection of movies. Each has been labeled for sentiment
as positive or negative. Here is the beginning of a negative
review:

This has to be one of the worst films of the 1990s. When my friends
& I were watching this film (being the target audience it was aimed at)
we just sat & watched the first half an hour with our jaws touching the
floor at how bad it really was. The rest of the time, everyone else in the
theater just started talking to each other, leaving or generally crying
into their popcorn . . .

We have labeled training and test sets, each consisting of 25,000
reviews, and each balanced with regard to sentiment.

We wish to build a classifier to predict the sentiment of a
review.

15 / 46

Document Classification: IMDB Movie Reviews

The IMDB corpus consists of user-supplied movie ratings for a
large collection of movies. Each has been labeled for sentiment
as positive or negative. Here is the beginning of a negative
review:

This has to be one of the worst films of the 1990s. When my friends
& I were watching this film (being the target audience it was aimed at)
we just sat & watched the first half an hour with our jaws touching the
floor at how bad it really was. The rest of the time, everyone else in the
theater just started talking to each other, leaving or generally crying
into their popcorn . . .

We have labeled training and test sets, each consisting of 25,000
reviews, and each balanced with regard to sentiment.

We wish to build a classifier to predict the sentiment of a
review.

15 / 46

Featurization: Bag-of-Words
Documents have di↵erent lengths, and consist of sequences of
words. How do we create features X to characterize a
document?

• From a dictionary, identify the 10K most frequently
occurring words.

• Create a binary vector of length p = 10K for each
document, and score a 1 in every position that the
corresponding word occurred.

• With n documents, we now have a n⇥ p sparse feature
matrix X.

• We compare a lasso logistic regression model to a
two-hidden-layer neural network on the next slide. (No
convolutions here!)

• Bag-of-words are unigrams. We can instead use bigrams

(occurrences of adjacent word pairs), and in general
m-grams.

16 / 46

Featurization: Bag-of-Words
Documents have di↵erent lengths, and consist of sequences of
words. How do we create features X to characterize a
document?

• From a dictionary, identify the 10K most frequently
occurring words.

• Create a binary vector of length p = 10K for each
document, and score a 1 in every position that the
corresponding word occurred.

• With n documents, we now have a n⇥ p sparse feature
matrix X.

• We compare a lasso logistic regression model to a
two-hidden-layer neural network on the next slide. (No
convolutions here!)

• Bag-of-words are unigrams. We can instead use bigrams

(occurrences of adjacent word pairs), and in general
m-grams.

16 / 46

Lasso versus Neural Network — IMDB Reviews

●

●●●●●●

●●●

●●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●
●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●

●●●●●●●●●●●●●

4 6 8 10 12

0.
6

0.
7

0.
8

0.
9

1.
0

Lasso

− log(λ)

Ac
cu
ra
cy

●

●●●●●●

●●●

●●
●

●
●

●
●
●
●
●
●
●

●●
●●
●
●
●
●
●●
●●
●
●●
●
●●
●●●

●●●
●●●●

●●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●

●●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●

●●●
●●
●●●

●●●
●●●●●

●●

●

●

●

train
validation
test

●

●

●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
6

0.
7

0.
8

0.
9

1.
0

Neural Net

Epochs
Ac
cu
ra
cy

●
● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ●

●

● ●●
● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

• Simpler lasso logistic regression model works as well as
neural network in this case.

• glmnet was used to fit the lasso model, and is very e↵ective
because it can exploit sparsity in the X matrix.

17 / 46

Recurrent Neural Networks
Often data arise as sequences:

• Documents are sequences of words, and their relative
positions have meaning.

• Time-series such as weather data or financial indices.
• Recorded speech or music.
• Handwriting, such as doctor’s notes.

RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

• The feature for each observation is a sequence of vectors
X = {X1, X2, . . . , XL}.

• The target Y is often of the usual kind — e.g. a single
variable such as Sentiment, or a one-hot vector for
multiclass.

• However, Y can also be a sequence, such as the same
document in a di↵erent language.

18 / 46

Recurrent Neural Networks
Often data arise as sequences:

• Documents are sequences of words, and their relative
positions have meaning.

• Time-series such as weather data or financial indices.
• Recorded speech or music.
• Handwriting, such as doctor’s notes.

RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

• The feature for each observation is a sequence of vectors
X = {X1, X2, . . . , XL}.

• The target Y is often of the usual kind — e.g. a single
variable such as Sentiment, or a one-hot vector for
multiclass.

• However, Y can also be a sequence, such as the same
document in a di↵erent language.

18 / 46

Recurrent Neural Networks
Often data arise as sequences:

• Documents are sequences of words, and their relative
positions have meaning.

• Time-series such as weather data or financial indices.
• Recorded speech or music.
• Handwriting, such as doctor’s notes.

RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

• The feature for each observation is a sequence of vectors
X = {X1, X2, . . . , XL}.

• The target Y is often of the usual kind — e.g. a single
variable such as Sentiment, or a one-hot vector for
multiclass.

• However, Y can also be a sequence, such as the same
document in a di↵erent language.

18 / 46

Recurrent Neural Networks
Often data arise as sequences:

• Documents are sequences of words, and their relative
positions have meaning.

• Time-series such as weather data or financial indices.
• Recorded speech or music.
• Handwriting, such as doctor’s notes.

RNNs build models that take into account this sequential
nature of the data, and build a memory of the past.

• The feature for each observation is a sequence of vectors
X = {X1, X2, . . . , XL}.

• The target Y is often of the usual kind — e.g. a single
variable such as Sentiment, or a one-hot vector for
multiclass.

• However, Y can also be a sequence, such as the same
document in a di↵erent language.

18 / 46

Simple Recurrent Neural Network Architecture

A1 A2 A3 AL-1 AL=A`

O`

Y

X`

O1

X1

O2

X2

O3

X3

OL-1

XL-1

OL

Y

XL
. . .

W

U
B

W

B

W

B

W

B

W

B

W

B

U U U U

• The hidden layer is a sequence of vectors A`, receiving as
input X` as well as A`�1. A` produces an output O`.

• The same weights W, U and B are used at each step in
the sequence — hence the term recurrent.

• The A` sequence represents an evolving model for the
response that is updated as each element X` is processed.

19 / 46

Simple Recurrent Neural Network Architecture

A1 A2 A3 AL-1 AL=A`

O`

Y

X`

O1

X1

O2

X2

O3

X3

OL-1

XL-1

OL

Y

XL
. . .

W

U
B

W

B

W

B

W

B

W

B

W

B

U U U U

• The hidden layer is a sequence of vectors A`, receiving as
input X` as well as A`�1. A` produces an output O`.

• The same weights W, U and B are used at each step in
the sequence — hence the term recurrent.

• The A` sequence represents an evolving model for the
response that is updated as each element X` is processed.

19 / 46

Simple Recurrent Neural Network Architecture

A1 A2 A3 AL-1 AL=A`

O`

Y

X`

O1

X1

O2

X2

O3

X3

OL-1

XL-1

OL

Y

XL
. . .

W

U
B

W

B

W

B

W

B

W

B

W

B

U U U U

• The hidden layer is a sequence of vectors A`, receiving as
input X` as well as A`�1. A` produces an output O`.

• The same weights W, U and B are used at each step in
the sequence — hence the term recurrent.

• The A` sequence represents an evolving model for the
response that is updated as each element X` is processed.

19 / 46

Simple Recurrent Neural Network Architecture

A1 A2 A3 AL-1 AL=A`

O`

Y

X`

O1

X1

O2

X2

O3

X3

OL-1

XL-1

OL

Y

XL
. . .

W

U
B

W

B

W

B

W

B

W

B

W

B

U U U U

• The hidden layer is a sequence of vectors A`, receiving as
input X` as well as A`�1. A` produces an output O`.

• The same weights W, U and B are used at each step in
the sequence — hence the term recurrent.

• The A` sequence represents an evolving model for the
response that is updated as each element X` is processed.

19 / 46

RNN in Detail
Suppose X` = (X`1, X`2, . . . , X`p) has p components, and
A` = (A`1, A`2, . . . , A`K) has K components. Then the
computation at the kth components of hidden unit A` is

A`k = g

⇣
wk0 +

pX

j=1

wkjX`j +
KX

s=1

uksA`�1,s

⌘

O` = �0 +
KX

k=1

�kA`k

Often we are concerned only with the prediction OL at the last
unit. For squared error loss, and n sequence/response pairs, we
would minimize

nX

i=1

(yi�oiL)2 =
nX

i=1

⇣
yi�

�
�0+

KX

k=1

�kg
�
wk0+

pX

j=1

wkjxiLj+
KX

s=1

uksai,L�1,s

��⌘2
.

20 / 46

RNN and IMDB Reviews

• The document feature is a sequence of words {W`}L1 . We
typically truncate/pad the documents to the same number
L of words (we use L = 500).

• Each word W` is represented as a one-hot encoded binary
vector X` (dummy variable) of length 10K, with all zeros
and a single one in the position for that word in the
dictionary.

• This results in an extremely sparse feature representation,
and would not work well.

• Instead we use a lower-dimensional pretrained word

embedding matrix E (m⇥ 10K, next slide).

• This reduces the binary feature vector of length 10K to a
real feature vector of dimension m⌧ 10K (e.g. m in the
low hundreds.)

21 / 46

Word Embedding

th
is is

on
e of th
e

be
st

fil
m
s

ac
tu
al
ly th
e

be
st I

ha
ve

ev
er

se
en th
e

fil
m

st
ar
ts

on
e fa
ll

da
y

O
ne
−h
ot

Em
be
d

this is one of the best films actually the best I have ever seen the film
starts one fall day · · · .

Embeddings are pretrained on very large corpora of documents,
using methods similar to principal components. word2vec and
GloVe are popular.

22 / 46

RNN on IMDB Reviews

• After a lot of work, the results are a disappointing 76%
accuracy.

• We then fit a more exotic RNN than the one displayed — a
LSTM with long and short term memory. Here A` receives
input from A`�1 (short term memory) as well as from a
version that reaches further back in time (long term
memory). Now we get 87% accuracy, slightly less than the
88% achieved by glmnet.

• These data have been used as a benchmark for new RNN
architectures. The best reported result found at the time of
writing (2020) was around 95%. We point to a leaderboard

in Section 10.5.1.

23 / 46

RNN on IMDB Reviews

• After a lot of work, the results are a disappointing 76%
accuracy.

• We then fit a more exotic RNN than the one displayed — a
LSTM with long and short term memory. Here A` receives
input from A`�1 (short term memory) as well as from a
version that reaches further back in time (long term
memory). Now we get 87% accuracy, slightly less than the
88% achieved by glmnet.

• These data have been used as a benchmark for new RNN
architectures. The best reported result found at the time of
writing (2020) was around 95%. We point to a leaderboard

in Section 10.5.1.

23 / 46

RNN on IMDB Reviews

• After a lot of work, the results are a disappointing 76%
accuracy.

• We then fit a more exotic RNN than the one displayed — a
LSTM with long and short term memory. Here A` receives
input from A`�1 (short term memory) as well as from a
version that reaches further back in time (long term
memory). Now we get 87% accuracy, slightly less than the
88% achieved by glmnet.

• These data have been used as a benchmark for new RNN
architectures. The best reported result found at the time of
writing (2020) was around 95%. We point to a leaderboard

in Section 10.5.1.

23 / 46

Time Series Forecasting

Lo
g(

Tr
ad

in
g

Vo
lu

m
e)

−1
.0

0.
0

0.
5

1.
0

D
ow

 J
on

es
 R

et
ur

n

−0
.0

4
0.

00
0.

04

1965 1970 1975 1980 1985

−1
3

−1
1

−9
−8

Lo
g(

Vo
la

til
ity

)

24 / 46

New-York Stock Exchange Data
Shown in previous slide are three daily time series for the period
December 3, 1962 to December 31, 1986 (6,051 trading days):

• Log trading volume. This is the fraction of all
outstanding shares that are traded on that day, relative to
a 100-day moving average of past turnover, on the log scale.

• Dow Jones return. This is the di↵erence between the log
of the Dow Jones Industrial Index on consecutive trading
days.

• Log volatility. This is based on the absolute values of
daily price movements.

Goal: predict Log trading volume tomorrow, given its
observed values up to today, as well as those of Dow Jones

return and Log volatility.
These data were assembled by LeBaron and Weigend (1998) IEEE

Transactions on Neural Networks, 9(1): 213–220.

25 / 46

Autocorrelation

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Log(Trading Volume)

Lag

Au
to

co
rre

la
tio

n
Fu

nc
tio

n

• The autocorrelation at lag ` is the correlation of all pairs
(vt, vt�`) that are ` trading days apart.

• These sizable correlations give us confidence that past
values will be helpful in predicting the future.

• This is a curious prediction problem: the response vt is also
a feature vt�`!

26 / 46

Autocorrelation

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Log(Trading Volume)

Lag

Au
to

co
rre

la
tio

n
Fu

nc
tio

n

• The autocorrelation at lag ` is the correlation of all pairs
(vt, vt�`) that are ` trading days apart.

• These sizable correlations give us confidence that past
values will be helpful in predicting the future.

• This is a curious prediction problem: the response vt is also
a feature vt�`!

26 / 46

Autocorrelation

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Log(Trading Volume)

Lag

Au
to

co
rre

la
tio

n
Fu

nc
tio

n

• The autocorrelation at lag ` is the correlation of all pairs
(vt, vt�`) that are ` trading days apart.

• These sizable correlations give us confidence that past
values will be helpful in predicting the future.

• This is a curious prediction problem: the response vt is also
a feature vt�`!

26 / 46

RNN Forecaster

We only have one series of data! How do we set up for an RNN?

We extract many short mini-series of input sequences
X = {X1, X2, . . . , XL} with a predefined length L known as the
lag:

X1 =

0

@
vt�L

rt�L

zt�L

1

A , X2 =

0

@
vt�L+1

rt�L+1

zt�L+1

1

A , · · · , XL =

0

@
vt�1

rt�1

zt�1

1

A , and Y = vt.

Since T = 6, 051, with L = 5 we can create 6, 046 such (X,Y)
pairs.
We use the first 4, 281 as training data, and the following 1, 770
as test data. We fit an RNN with 12 hidden units per lag step
(i.e. per A`.)

27 / 46

RNN Results for NYSE Data

1980 1982 1984 1986

−1
.0

0.
0

0.
5

1.
0

Test Period: Observed and Predicted

Year

lo
g(

Tr
ad

in
g

Vo
lu

m
e)

Figure shows predictions and truth for test period.

R
2 = 0.42 for RNN

R
2 = 0.18 for straw man — use yesterday’s value of Log

trading volume to predict that of today.

28 / 46

Autoregression Forecaster

The RNN forecaster is similar in structure to a traditional
autoregression procedure.

y =

2

666664

vL+1

vL+2

vL+3
...
vT

3

777775
M =

2

666664

1 vL vL�1 · · · v1

1 vL+1 vL · · · v2

1 vL+2 vL+1 · · · v3
...

...
...

. . .
...

1 vT�1 vT�2 · · · vT�L

3

777775
.

Fit an OLS regression of y on M, giving

v̂t = �̂0 + �̂1vt�1 + �̂2vt�2 + · · ·+ �̂Lvt�L.

Known as an order-L autoregression model or AR(L).
For the NYSE data we can include lagged versions of DJ return

and log volatility in matrix M, resulting in 3L+ 1 columns.

29 / 46

Autoregression Results for NYSE Data

R
2 = 0.41 for AR(5) model (16 parameters)

R
2 = 0.42 for RNN model (205 parameters)

R
2 = 0.42 for AR(5) model fit by neural network.

R
2 = 0.46 for all models if we include day of week of day being

predicted.

30 / 46

Summary of RNNs

• We have presented the simplest of RNNs. Many more
complex variations exist.

• One variation treats the sequence as a one-dimensional
image, and uses CNNs for fitting. For example, a sequence
of words using an embedding representation can be viewed
as an image, and the CNN convolves by sliding a
convolutional filter along the sequence.

• Can have additional hidden layers, where each hidden layer
is a sequence, and treats the previous hidden layer as an
input sequence.

• Can have output also be a sequence, and input and output
share the hidden units. So called seq2seq learning are used
for language translation.

31 / 46

When to Use Deep Learning
• CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

• RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?
• Often the big successes occur when the signal to noise ratio

is high — e.g. image recognition and language translation.
Datasets are large, and overfitting is not a big problem.

• For noisier data, simpler models can often work better.
• On the NYSE data, the AR(5) model is much simpler than a

RNN, and performed as well.
• On the IMDB review data, the linear model fit by glmnet did

as well as the neural network, and better than the RNN.
• We endorse the Occam’s razor principal — we prefer
simpler models if they work as well. More interpretable!

32 / 46

When to Use Deep Learning
• CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

• RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?
• Often the big successes occur when the signal to noise ratio

is high — e.g. image recognition and language translation.
Datasets are large, and overfitting is not a big problem.

• For noisier data, simpler models can often work better.
• On the NYSE data, the AR(5) model is much simpler than a

RNN, and performed as well.
• On the IMDB review data, the linear model fit by glmnet did

as well as the neural network, and better than the RNN.
• We endorse the Occam’s razor principal — we prefer
simpler models if they work as well. More interpretable!

32 / 46

When to Use Deep Learning
• CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

• RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?

• Often the big successes occur when the signal to noise ratio

is high — e.g. image recognition and language translation.
Datasets are large, and overfitting is not a big problem.

• For noisier data, simpler models can often work better.
• On the NYSE data, the AR(5) model is much simpler than a

RNN, and performed as well.
• On the IMDB review data, the linear model fit by glmnet did

as well as the neural network, and better than the RNN.
• We endorse the Occam’s razor principal — we prefer
simpler models if they work as well. More interpretable!

32 / 46

When to Use Deep Learning
• CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

• RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?
• Often the big successes occur when the signal to noise ratio

is high — e.g. image recognition and language translation.
Datasets are large, and overfitting is not a big problem.

• For noisier data, simpler models can often work better.
• On the NYSE data, the AR(5) model is much simpler than a

RNN, and performed as well.
• On the IMDB review data, the linear model fit by glmnet did

as well as the neural network, and better than the RNN.
• We endorse the Occam’s razor principal — we prefer
simpler models if they work as well. More interpretable!

32 / 46

When to Use Deep Learning
• CNNs have had enormous successes in image classification
and modeling, and are starting to be used in medical
diagnosis. Examples include digital mammography,
ophthalmology, MRI scans, and digital X-rays.

• RNNs have had big wins in speech modeling, language
translation, and forecasting.

Should we always use deep learning models?
• Often the big successes occur when the signal to noise ratio

is high — e.g. image recognition and language translation.
Datasets are large, and overfitting is not a big problem.

• For noisier data, simpler models can often work better.
• On the NYSE data, the AR(5) model is much simpler than a

RNN, and performed as well.
• On the IMDB review data, the linear model fit by glmnet did

as well as the neural network, and better than the RNN.

• We endorse the Occam’s razor principal — we prefer
simpler models if they work as well. More interpretable!

32 / 46

Fitting Neural Networks

X1

X2

X3

X4

A1

A2

A3

A4

A5

f(X) Y

Hidden
Layer

Input
Layer

Output
Layer

minimize
{wk}K

1 , �

1

2

nX

i=1

(yi � f(xi))
2
,

where

f(xi) = �0+
KX

k=1

�kg

⇣
wk0+

pX

j=1

wkjxij

⌘
.

This problem is di�cult because the objective is non-convex.

Despite this, e↵ective algorithms have evolved that can
optimize complex neural network problems e�ciently.

33 / 46

Fitting Neural Networks

X1

X2

X3

X4

A1

A2

A3

A4

A5

f(X) Y

Hidden
Layer

Input
Layer

Output
Layer

minimize
{wk}K

1 , �

1

2

nX

i=1

(yi � f(xi))
2
,

where

f(xi) = �0+
KX

k=1

�kg

⇣
wk0+

pX

j=1

wkjxij

⌘
.

This problem is di�cult because the objective is non-convex.

Despite this, e↵ective algorithms have evolved that can
optimize complex neural network problems e�ciently.

33 / 46

Fitting Neural Networks

X1

X2

X3

X4

A1

A2

A3

A4

A5

f(X) Y

Hidden
Layer

Input
Layer

Output
Layer

minimize
{wk}K

1 , �

1

2

nX

i=1

(yi � f(xi))
2
,

where

f(xi) = �0+
KX

k=1

�kg

⇣
wk0+

pX

j=1

wkjxij

⌘
.

This problem is di�cult because the objective is non-convex.

Despite this, e↵ective algorithms have evolved that can
optimize complex neural network problems e�ciently.

33 / 46

Non Convex Functions and Gradient Descent

Let R(✓) = 1
2

Pn
i=1(yi � f✓(xi))2 with ✓ = ({wk}K1 , �).

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6

θ

R
(θ
)

θ0 θ1 θ2 θ7

●

●

●

●

R(θ0)
R(θ1)

R(θ2)

R(θ7)

1. Start with a guess ✓0 for all the parameters in ✓, and set t = 0.

2. Iterate until the objective R(✓) fails to decrease:

(a) Find a vector � that reflects a small change in ✓, such that
✓
t+1 = ✓

t + � reduces the objective; i.e. R(✓t+1) < R(✓t).
(b) Set t t+ 1.

34 / 46

Gradient Descent Continued
• In this simple example we reached the global minimum.
• If we had started a little to the left of ✓0 we would have
gone in the other direction, and ended up in a local

minimum.
• Although ✓ is multi-dimensional, we have depicted the
process as one-dimensional. It is much harder to identify
whether one is in a local minimum in high dimensions.

How to find a direction � that points downhill? We compute
the gradient vector

rR(✓t) =
@R(✓)

@✓

���
✓=✓t

i.e. the vector of partial derivatives at the current guess ✓t.
The gradient points uphill, so our update is � = �⇢rR(✓t) or

✓
t+1 ✓

t � ⇢rR(✓t),

where ⇢ is the learning rate (typically small, e.g. ⇢ = 0.001.
35 / 46

Gradients and Backpropagation

R(✓) =
Pn

i=1Ri(✓) is a sum, so gradient is sum of gradients.

Ri(✓) =
1
2(yi�f✓(xi))

2 = 1
2

⇣
yi��0�

KX

k=1

�kg
�
wk0+

pX

j=1

wkjxij
�⌘2

For ease of notation, let zik = wk0 +
Pp

j=1wkjxij .

Backpropagation uses the chain rule for di↵erentiation:

@Ri(✓)

@�k
=

@Ri(✓)

@f✓(xi)
· @f✓(xi)

@�k

= �(yi � f✓(xi)) · g(zik).
@Ri(✓)

@wkj
=

@Ri(✓)

@f✓(xi)
· @f✓(xi)
@g(zik)

· @g(zik)
@zik

· @zik

@wkj

= �(yi � f✓(xi)) · �k · g0(zik) · xij .

36 / 46

Tricks of the Trade

• Slow learning. Gradient descent is slow, and a small
learning rate ⇢ slows it even further. With early stopping,
this is a form of regularization.

• Stochastic gradient descent. Rather than compute the
gradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

• An epoch is a count of iterations and amounts to the
number of minibatch updates such that n samples in total
have been processed; i.e. 60K/128 ⇡ 469 for MNIST.

• Regularization. Ridge and lasso regularization can be used
to shrink the weights at each layer. Two other popular
forms of regularization are dropout and augmentation,
discussed next.

37 / 46

Tricks of the Trade

• Slow learning. Gradient descent is slow, and a small
learning rate ⇢ slows it even further. With early stopping,
this is a form of regularization.

• Stochastic gradient descent. Rather than compute the
gradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

• An epoch is a count of iterations and amounts to the
number of minibatch updates such that n samples in total
have been processed; i.e. 60K/128 ⇡ 469 for MNIST.

• Regularization. Ridge and lasso regularization can be used
to shrink the weights at each layer. Two other popular
forms of regularization are dropout and augmentation,
discussed next.

37 / 46

Tricks of the Trade

• Slow learning. Gradient descent is slow, and a small
learning rate ⇢ slows it even further. With early stopping,
this is a form of regularization.

• Stochastic gradient descent. Rather than compute the
gradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

• An epoch is a count of iterations and amounts to the
number of minibatch updates such that n samples in total
have been processed; i.e. 60K/128 ⇡ 469 for MNIST.

• Regularization. Ridge and lasso regularization can be used
to shrink the weights at each layer. Two other popular
forms of regularization are dropout and augmentation,
discussed next.

37 / 46

Tricks of the Trade

• Slow learning. Gradient descent is slow, and a small
learning rate ⇢ slows it even further. With early stopping,
this is a form of regularization.

• Stochastic gradient descent. Rather than compute the
gradient using all the data, use a small minibatch drawn at
random at each step. E.g. for MNIST data, with n = 60K,
we use minibatches of 128 observations.

• An epoch is a count of iterations and amounts to the
number of minibatch updates such that n samples in total
have been processed; i.e. 60K/128 ⇡ 469 for MNIST.

• Regularization. Ridge and lasso regularization can be used
to shrink the weights at each layer. Two other popular
forms of regularization are dropout and augmentation,
discussed next.

37 / 46

Dropout Learning

• At each SGD update, randomly remove units with
probability �, and scale up the weights of those retained by
1/(1� �) to compensate.

• In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

• As in ridge, the other units stand in for those temporarily
removed, and their weights are drawn closer together.

• Similar to randomly omitting variables when growing trees
in random forests (Chapter 8).

38 / 46

Dropout Learning

• At each SGD update, randomly remove units with
probability �, and scale up the weights of those retained by
1/(1� �) to compensate.

• In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

• As in ridge, the other units stand in for those temporarily
removed, and their weights are drawn closer together.

• Similar to randomly omitting variables when growing trees
in random forests (Chapter 8).

38 / 46

Dropout Learning

• At each SGD update, randomly remove units with
probability �, and scale up the weights of those retained by
1/(1� �) to compensate.

• In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

• As in ridge, the other units stand in for those temporarily
removed, and their weights are drawn closer together.

• Similar to randomly omitting variables when growing trees
in random forests (Chapter 8).

38 / 46

Dropout Learning

• At each SGD update, randomly remove units with
probability �, and scale up the weights of those retained by
1/(1� �) to compensate.

• In simple scenarios like linear regression, a version of this
process can be shown to be equivalent to ridge
regularization.

• As in ridge, the other units stand in for those temporarily
removed, and their weights are drawn closer together.

• Similar to randomly omitting variables when growing trees
in random forests (Chapter 8).

38 / 46

Ridge and Data Augmentation

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

• Make many copies of each (xi, yi) and add a small amount
of Gaussian noise to the xi — a little cloud around each
observation — but leave the copies of yi alone!

• This makes the fit robust to small perturbations in xi, and
is equivalent to ridge regularization in an OLS setting.

39 / 46

Data Augmentation on the Fly

• Data augmentation is especially e↵ective with SGD, here
demonstrated for a CNN and image classification.

• Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

• The label is left unchanged — in each case still tiger.

• Improves performance of CNN and is similar to ridge.

40 / 46

Data Augmentation on the Fly

• Data augmentation is especially e↵ective with SGD, here
demonstrated for a CNN and image classification.

• Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

• The label is left unchanged — in each case still tiger.

• Improves performance of CNN and is similar to ridge.

40 / 46

Data Augmentation on the Fly

• Data augmentation is especially e↵ective with SGD, here
demonstrated for a CNN and image classification.

• Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

• The label is left unchanged — in each case still tiger.

• Improves performance of CNN and is similar to ridge.

40 / 46

Data Augmentation on the Fly

• Data augmentation is especially e↵ective with SGD, here
demonstrated for a CNN and image classification.

• Natural transformations are made of each training image
when it is sampled by SGD, thus ultimately making a
cloud of images around each original training image.

• The label is left unchanged — in each case still tiger.

• Improves performance of CNN and is similar to ridge.

40 / 46

Double Descent

• With neural networks, it seems better to have too many
hidden units than too few.

• Likewise more hidden layers better than few.

• Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

• Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
error.

What happened to overfitting and the usual bias-variance
trade-o↵?

Belkin, Hsu, Ma and Mandal (arXiv 2018) Reconciling Modern Machine Learning

and the Bias-Variance Trade-o↵.

41 / 46

Double Descent

• With neural networks, it seems better to have too many
hidden units than too few.

• Likewise more hidden layers better than few.

• Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

• Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
error.

What happened to overfitting and the usual bias-variance
trade-o↵?

Belkin, Hsu, Ma and Mandal (arXiv 2018) Reconciling Modern Machine Learning

and the Bias-Variance Trade-o↵.

41 / 46

Double Descent

• With neural networks, it seems better to have too many
hidden units than too few.

• Likewise more hidden layers better than few.

• Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

• Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
error.

What happened to overfitting and the usual bias-variance
trade-o↵?

Belkin, Hsu, Ma and Mandal (arXiv 2018) Reconciling Modern Machine Learning

and the Bias-Variance Trade-o↵.

41 / 46

Double Descent

• With neural networks, it seems better to have too many
hidden units than too few.

• Likewise more hidden layers better than few.

• Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

• Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
error.

What happened to overfitting and the usual bias-variance
trade-o↵?

Belkin, Hsu, Ma and Mandal (arXiv 2018) Reconciling Modern Machine Learning

and the Bias-Variance Trade-o↵.

41 / 46

Double Descent

• With neural networks, it seems better to have too many
hidden units than too few.

• Likewise more hidden layers better than few.

• Running stochastic gradient descent till zero training error
often gives good out-of-sample error.

• Increasing the number of units or layers and again training
till zero error sometimes gives even better out-of-sample
error.

What happened to overfitting and the usual bias-variance
trade-o↵?

Belkin, Hsu, Ma and Mandal (arXiv 2018) Reconciling Modern Machine Learning

and the Bias-Variance Trade-o↵.

41 / 46

Simulation

• y = sin(x) + " with x ⇠ U [�5, 5] and " Gaussian with
S.D. = 0.3.

• Training set n = 20, test set very large (10K).

• We fit a natural spline to the data (Section 7.4) with d

degrees of freedom — i.e. a linear regression onto d basis
functions: ŷi = �̂1N1(xi) + �̂2N2(xi) + · · ·+ �̂dNd(xi).

• When d = 20 we fit the training data exactly, and get all
residuals equal to zero.

• When d > 20, we still fit the data exactly, but the solution
is not unique. Among the zero-residual solutions, we pick
the one with minimum norm — i.e. the zero-residual
solution with smallest

Pd
j=1 �̂

2
j .

42 / 46

The Double-Descent Error Curve

2 5 10 20 50

0.
0

0.
5

1.
0

1.
5

2.
0

Degrees of Freedom

Er
ro

r

Training Error
Test Error

• When d  20, model is OLS, and we see usual bias-variance
trade-o↵

• When d > 20, we revert to minimum-norm. As d increases
above 20,

Pd
j=1 �̂

2
j decreases since it is easier to achieve

zero error, and hence less wiggly solutions.
43 / 46

Less Wiggly Solutions

−4 −2 0 2 4

−3
−2

−1
0

1
2

3
8 Degrees of Freedom

seq(−5, 5, len = 1000)

−4 −2 0 2 4

−3
−2

−1
0

1
2

3

20 Degrees of Freedom

seq(−5, 5, len = 1000)

f(s
eq

(−
5,

 5
, l

en
 =

 1
00

0)
)

−4 −2 0 2 4

−3
−2

−1
0

1
2

3

42 Degrees of Freedom

−4 −2 0 2 4

−3
−2

−1
0

1
2

3

80 Degrees of Freedom

f(s
eq

(−
5,

 5
, l

en
 =

 1
00

0)
)

To achieve a zero-residual solution with d = 20 is a real stretch!
Easier for larger d.

44 / 46

Some Facts

• In a wide linear model (p� n) fit by least squares, SGD
with a small step size leads to a minimum norm

zero-residual solution.

• Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

• By analogy, deep and wide neural networks fit by SGD
down to zero training error often give good solutions that
generalize well.

• In particular cases with high signal-to-noise ratio — e.g.
image recognition — are less prone to overfitting; the
zero-error solution is mostly signal!

45 / 46

Some Facts

• In a wide linear model (p� n) fit by least squares, SGD
with a small step size leads to a minimum norm

zero-residual solution.

• Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

• By analogy, deep and wide neural networks fit by SGD
down to zero training error often give good solutions that
generalize well.

• In particular cases with high signal-to-noise ratio — e.g.
image recognition — are less prone to overfitting; the
zero-error solution is mostly signal!

45 / 46

Some Facts

• In a wide linear model (p� n) fit by least squares, SGD
with a small step size leads to a minimum norm

zero-residual solution.

• Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

• By analogy, deep and wide neural networks fit by SGD
down to zero training error often give good solutions that
generalize well.

• In particular cases with high signal-to-noise ratio — e.g.
image recognition — are less prone to overfitting; the
zero-error solution is mostly signal!

45 / 46

Some Facts

• In a wide linear model (p� n) fit by least squares, SGD
with a small step size leads to a minimum norm

zero-residual solution.

• Stochastic gradient flow — i.e. the entire path of SGD
solutions — is somewhat similar to ridge path.

• By analogy, deep and wide neural networks fit by SGD
down to zero training error often give good solutions that
generalize well.

• In particular cases with high signal-to-noise ratio — e.g.
image recognition — are less prone to overfitting; the
zero-error solution is mostly signal!

45 / 46

