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Pros of Tree-based Methods

Trees are very easy to explain to people. In fact, they are even
easlier to explain than linear regression!

Some people believe that decision trees more closely mirror
human decision-making than do the regression and
classification approaches seen in previous chapters.

Trees can be displayed graphically, and are easily interpreted
even by a non-expert (especially if they are small).

Trees can easily handle qualitative predictors without the need
to create dummy variables.



From single-tree to many-trees

e However, trees generally do not have the same level of
predictive accuracy as some of the other regression (and
classification approaches) covered before.

e By aggregating many decision trees, the predictive performance
of trees can be substantially improved. We introduce these
concepts next.



Bagging

e Bootstrap aggregation, or bagging, 1s a general-purpose
procedure for reducing the variance of a statistical learning
method

o It I1s particularly useful and frequently used in the context of
decision trees.

e Recall that given a set of n independent observations
Zi, ..., Zy, each with variance o2, the variance of the mean Z
of the observations is given by o2 /n.

o In other words, averaging a set of observations reduces
variance. (But we usually only have one sample set)



Bagging continued

e Instead, we can bootstrap, by taking repeated samples from the
(single) training data set.

e In this approach we generate B different (bootstrapped)
training data sets.

o We then train our method on the bth bootstrapped training
set in order to get f*°(x), the prediction at a point .

e Average all the predictions to obtain
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Bagging regression trees

e The above prescription applied to regression trees:

o Foreach b € {1, ..., B}, we compute the prediction f*b(m)
by buiding the b-th tree as discussed before

o The final prediction is the average of all the B predictions.



Out-of-Bag Error

e There is a very straightforward way to estimate the test error of
a bagged model.

e Recall that the key to bagging is that trees are repeatedly fit to
bootstrapped subsets of the observations.

o One can show that on average, each bagged tree makes use
of around two-thirds of the observations. (Why?)

o The remaining one-third of the observations not used to fit a

given bagged tree are referred to as the out-of-bag (0O0OB)
observations.



Out-of-Bag Error Estimation

e We can predict the response for the 2-th observation using each
of the trees in which that observation was OOB. This will yield
around B /3 predictions for the ¢-th observation, which we
average.

e This estimate iIs essentially the LOO cross-validation error for
bagging, if B is large.

e Therefore, use the magic formula for LOO cross-validation.



Random Forests

e Random forests provide an improvement over bagged trees by
way of a small tweak that decorrelates the trees. This reduces
the variance when we average the trees.

e As in bagging, we build a number of decision trees on
bootstrapped training samples.

e But when building these decision trees, each time a splitin a
tree Is considered, a random selection of m predictors is

chosen as split candidates from the full set of p predictors.

o The split is allowed to use only one of those m predictors.



Random Forests Cont.

e A fresh selection of m predictors is taken at each split, and
typically we choose m ~ ,/p

o That is, the number of predictors considered at each splitis
approximately equal to the square root of the total number
of predictors.

e By focusing on m(~ \/1_9) predictors, each time we grow a very
small tree. This decorrelates the trees.

o In practice, this method also can prevent over-fitting.
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