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Shrinkage Methods

The methods that we have discussed so far in this chapter have
involved fitting linear regression models, via least squares or a
shrunken approach, using the original predictors, .

We now explore a class of approaches that transform the
predictors and then fit a least squares model using the
transformed variables.

We will refer to these techniques as dimension reduction
methods.

X ​, … ,X ​1 p
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Dimension Reduction Methods: details

Let  represent  linear combinations of our
original  predictors:

Z ​ =m ​ϕ ​X ​  for some constants  ϕ ​, ..., ϕ ​.
j=1

∑
p

mj j m1 mp

We then fit the linear regression model,

y ​ =i θ ​ +0 ​θ ​z ​ +
m=1

∑
M

m im ϵ ​, i =i 1, … ,N .

Z ​, … ,Z ​1 M M < p

p
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Advantage of Dimension Reduction

Dimension reduction serves to constrain the estimated 
coefficients, since now they must take the form:

β ​ =j ​θ ​ϕ ​.
m

∑ m mj

If the constants , ...,  are chosen wisely, then such
dimension reduction approaches can often outperform OLS
regression.

Can win in the bias-variance tradeoff.

β ​j

ϕ ​m1 ϕ ​mp
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Principal Components Regression

Here we apply principal components analysis (PCA) (discussed
in Chapter 10 of the text) to define the linear combinations of
the predictors, for use in our regression.

PCA is indeed a popular unsupervised learning method. Here we
use it to "extract the main information" from 's first, denoted
by 's. And then regress  on 's.

X

Z y Z
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PCA details

The first principal component is that (normalized) linear
combination of the variables with the largest variance.
The second principal component has largest variance, subject
to being uncorrelated with the first.
And so on ...
Hence with many correlated original variables, we replace them
with a small set of principal components that capture their
joint variation.
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In the case of , choosing the first main component is
equivalent to minimizing the "sum of squared distances."

p = 2
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max Var(z ​) s.t. ϕ ​ +1 11
2 ϕ ​ =21

2 1.

z ​ =1 ϕ ​ ×11 (pop ​ −i ​) +pop ϕ ​ ×21 (ad ​ −i )ad
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From PCA to PCR (Principal Components Regression)

Choosing the number of directions/components .

Use PCA to obtain the principal components ,..., .

Regress  on ,..., .

Use cross-validation to select the optimal .

M
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Partial Least Squares (PLS)

Like PCR, PLS is a dimension reduction method, which first
identifies a new set of features Z1, . . . , ZM that are linear
combinations of the original features, and then fits a linear
model via OLS using these M new features.
But unlike PCR, PLS identifies these new features in a
supervised way – that is, it makes use of the response Y in
order to identify new features that not only approximate the
old features well, but also that are related to the response.
Roughly speaking, the PLS approach attempts to find directions
that help explain both the response and the predictors.
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Partial Least Squares (PLS): details

After standardizing the p predictors, PLS computes the first
direction  by setting each 's equal to the coefficient from
the simple linear regression of Y onto . (i.e., ).

Subsequent directions are found by taking residuals and then
repeating the above prescription.

Z ​1 ϕ

X ​j Z ​ =1 Ŷ
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Summary of model selection

Model selection methods are an essential tool for data analysis,
especially for big datasets involving many predictors.

Research into methods that give sparsity, such as the lasso is
an especially hot area.
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