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Shrinkage Methods

e The methods that we have discussed so far in this chapter have
Involved fitting linear regression models, via least squares or a

shrunken approach, using the original predictors, Xy, ..., X,.

e We now explore a class of approaches that transform the

predictors and then fit a least squares model using the
transformed variables.

e We will refer to these techniques as dimension reduction
methods.



Dimension Reduction Methods: details

e Let Z1,..., Zy represent M < p linear combinations of our
original p predictors:

p
Dy = Z ®m;iX; for some constants ¢p1, ..., Pmp.
j=1

e We then fit the linear regression model,

M
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Advantage of Dimension Reduction

e Dimension reduction serves to constrain the estimated 3;
coefficients, since now they must take the form:

Bj — Z 9m¢mj-

e If the constants @1, ..., mp are chosen wisely, then such

dimension reduction approaches can often outperform OLS
regression.

o Can win in the bias-variance tradeoff.



Principal Components Regression

e Here we apply principal components analysis (PCA) (discussed
in Chapter 10 of the text) to define the linear combinations of
the predictors, for use in our regression.

e PCA is indeed a popular unsupervised learning method. Here we
use it to "extract the main information" from X's first, denoted

by Z's. And then regress y on Z's.



PCA details

The first principal component is that (normalized) linear
combination of the variables with the largest variance.

The second principal component has largest variance, subject
to being uncorrelated with the first.

And so on ...

Hence with many correlated original variables, we replace them
with a small set of principal components that capture their
joint variation.
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In the case of p = 2, choosing the first main component is
equivalent to minimizing the "sum of squared distances."
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max Var(z1) s.t. ¢35, + ¢35, = 1.



From PCA to PCR (Principal Components Regression)

e Choosing the number of directions/components M.
e Use PCA to obtain the principal components Zy,..., Zy;.

e Regress Y on £1,..., Zyy.

Use cross-validation to select the optimal M.



Partial Least Squares (PLS)

e Like PCR, PLS is a dimension reduction me

thod, which first

iIdentifies a new set of features Z1, ..., ZM that are linear

combinations of the original features, and
model via OLS using these M new features

then fits a linear

e But unlike PCR, PLS identifies these new features in a

supervised way - that is, it makes use of t
order to identify new features that not on

e response Y In
ly approximate the

old features well, but also that are relatec

to the response.

e Roughly speaking, the PLS approach attempts to find directions
that help explain both the response and the predictors.
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Partial Least Squares (PLS): details

e After standardizing the p predictors, PLS computes the first
direction Z; by setting each ¢'s equal to the coefficient from

A

the simple linear regression of Y onto X ;. (i.e., Z; = Y).

e Subsequent directions are found by taking residuals and then
repeating the above prescription.
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Summary of model selection

e Model selection methods are an essential tool for data analysis,
especially for big datasets involving many predictors.

e Research into methods that give sparsity, such as the lasso is
an especially hot area.
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