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Shrinkage Methods

JS Estimators imply that we can fit a model containing all 
predictors using a technique that shrinks the coefficient
estimates towards zero.
It turns out that shrinking the coefficient estimates can
significantly reduce their variance, and thus can improve the fit.
Two popular shrinkage methods in the context of linear model:
Ridge Regression and lasso.
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From OLS to Ridge regression

Linear model: .

Recall that the LS fitting procedure estimates , , ..., 
using the values that minimize RSS over the training data:
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From OLS to Ridge regression

Linear model: .

Ridge regression uses the  that minimize

RSS + λ ​β ​

j=1

∑
p

j
2

where  is a tuning parameter, to be determined
separately.

y = β ​ +0 ​ β ​x ​ +∑j=1
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j j ε
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λ ≥ 0
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Ridge regression

As with LS, ridge regression seeks coefficient estimates that fit
the data well, by making the RSS small.

However, the second term  is small when the 's are
close to zero, and so it has the effect of shrinking the estimates
of  towards zero.

The tuning parameter  is determined by cross validation, and
serves to control the relative impact of these two terms on the
regression coefficient estimates.
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Figure. the credit data example: predicting balance from other 10
predictors (age, cards, gender, student, limit, ...) 6



Some "stupid questions" in case anyone is confused...

Q: How many "models" are there in the left panel?
A: Infinite. Each  leads to some .

Q: What are "1e-02" and "1e+04" in the left panel?
A: That's how R represents  and  (scientific e notation).

Q: What's  in the right panel?

A: This is called the  norm: .

Specifically,  is OLS estimator and  is the Ridge estimator
with the tuning parameter .

Q: Why the range of x-axis is [0,1] in the right panel?
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Ridge regression: scaling of predictors

The OLS estimates are scale equivariant: multiplying  by a
constant  simply leads to a scaling of the LS estimates by a
factor of .

In other words, regardless of how the -th predictor is scaled,
 will remain the same.

In contrast, the ridge regression coefficient estimates can
change substantially when multiplying a given predictor by a
constant, due to the penalty term in the ridge regression
objective function.

X ​j

c

1/c

j

​ ​X ​β̂j j

8



Ridge regression: scaling of predictors

Therefore, it is best to apply ridge regression after
standardizing the predictors, using the formula:

​ =x~ij ​

​​ ​(x ​ − ​)
n
1 ∑i=1

N
ij x̄j 2

x ​ij

Like OLS, Ridge regression allows an exact formula:

​ =β̂R (X X +T λI ​) X Yp
−1 T

You can see that the ridge estimates are not scale equivariant.
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Fig: Ridge regression and bias-variance tradeoff. Squared bias (
), variance ( ), and test mean squared error ( )

for the ridge regression predictions on a simulated data set.
black green purple
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Least Absolute Shrinkage and Selection Operator (LASSO)

Lasso, invented by Rob Tibshirani in 1996, is a relatively recent
alternative to ridge regression.

Ridge regression has one obvious disadvantage:
unlike subset selection, which will generally select models
that involve just a subset of the variables, ridge regression
will include all  predictors in the final model.
In other words, Ridge does not select features.

Lasso is mainly proposed to overcome that disadvantage.
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Least Absolute Shrinkage and Selection Operator (LASSO)

The lasso coefficients, , minimize the quantity

RSS + λ ​ ∣β ​∣
j=1

∑
p

j

In other words, the lasso uses an  (pronounced “ell 1”)
penalty instead of an  penalty.

The  norm of a coefficient vector  is given by
.
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Lasso v.s. Ridge Regression

As with ridge regression, the lasso shrinks the coefficient
estimates towards zero.

However, in the case of the lasso, the  penalty has the effect
of forcing some of the coefficient estimates to be exactly equal
to zero when the tuning parameter  is sufficiently large.

Hence, much like best subset selection, the lasso performs
variable selection.

We say that the lasso yields sparse models — that is, models
that involve only a subset of the variables.
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Example: Credit dataset and lasso
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Review: Lagrangian of an optimization problem

One can show that the lasso and ridge regression coefficient
estimates solve the problems

min ​ (y ​ −
i=1

∑
N

i f ​(x ​))  s.t.  β ​ ≤L i

2 ∑ j
2 s (Ridge)

min ​ (y ​ −
i=1

∑
N

i f ​(x ​))  s.t.  ∣β ​∣ ≤L i

2 ∑ j s (Lasso)

respectively, where .f ​(x ​) =L i β ​ +0 ​ β ​x ​∑j=1
p

j j
15



Why LASSO performs feature selection while Ridge
Regression does not?

Ridge regression uses  penalty. So in the optimization, the
search area is a circle, which leads to an interior solution.

Lasso uses  penalty. So in the optimization, the search area is
a square, which leads to an corner solution.

ℓ ​2

ℓ ​1
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Lasso v.s. Ridge Regression: illustration
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Lasso v.s. Ridge regression on predicting power

In general, one might expect the lasso to perform better when
the response is a function of only a relatively small number of
predictors.

However, the number of predictors that is related to the
response is never known a priori for real data sets.

One needs to use cross-validation to determine which approach
is better on a particular problem.
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Selecting the Tuning Parameter

For both Ridge Regression and Lasso, we need to do cross-
validation to select a value for the tuning parameter  (or
equivalently, the value of the constraint ):

1. We choose a grid of  values, and compute the cross-
validation error rate for each value of .

2. We then select the tuning parameter value for which the
cross-validation error is smallest.

3. Finally, the model is re-fit using all of the available
observations and the selected value of .
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Fig: Credit data example. Cross-validation errors that result from
applying ridge regression to the Credit data set.
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Fig: CV on lasso. Ten-fold cross-validation MSE for the lasso,
applied to the sparse simulated data set.
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