

# Shrinkage

Instructor: Haoran LEI

Hunan University

# Shrinkage Methods

- JS Estimators imply that we can fit a model containing all  $p$  predictors using a technique that *shrinks the coefficient estimates towards zero*.
- It turns out that shrinking the coefficient estimates can significantly *reduce their variance*, and thus can improve the fit.
- Two popular shrinkage methods in the context of linear model: **Ridge Regression** and **lasso**.

## From OLS to Ridge regression

- Linear model:  $f_L(x) = \beta_0 + \sum_{j=1}^p \beta_j x_j$ .
- Recall that the **LS fitting** procedure estimates  $\beta_0, \beta_1, \dots, \beta_p$  using the values that minimize RSS over the training data:

$$RSS = \sum_{i=1}^N (y_i - \hat{y}_i)^2$$

- where  $\hat{y}_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij}$ .

# From OLS to Ridge regression

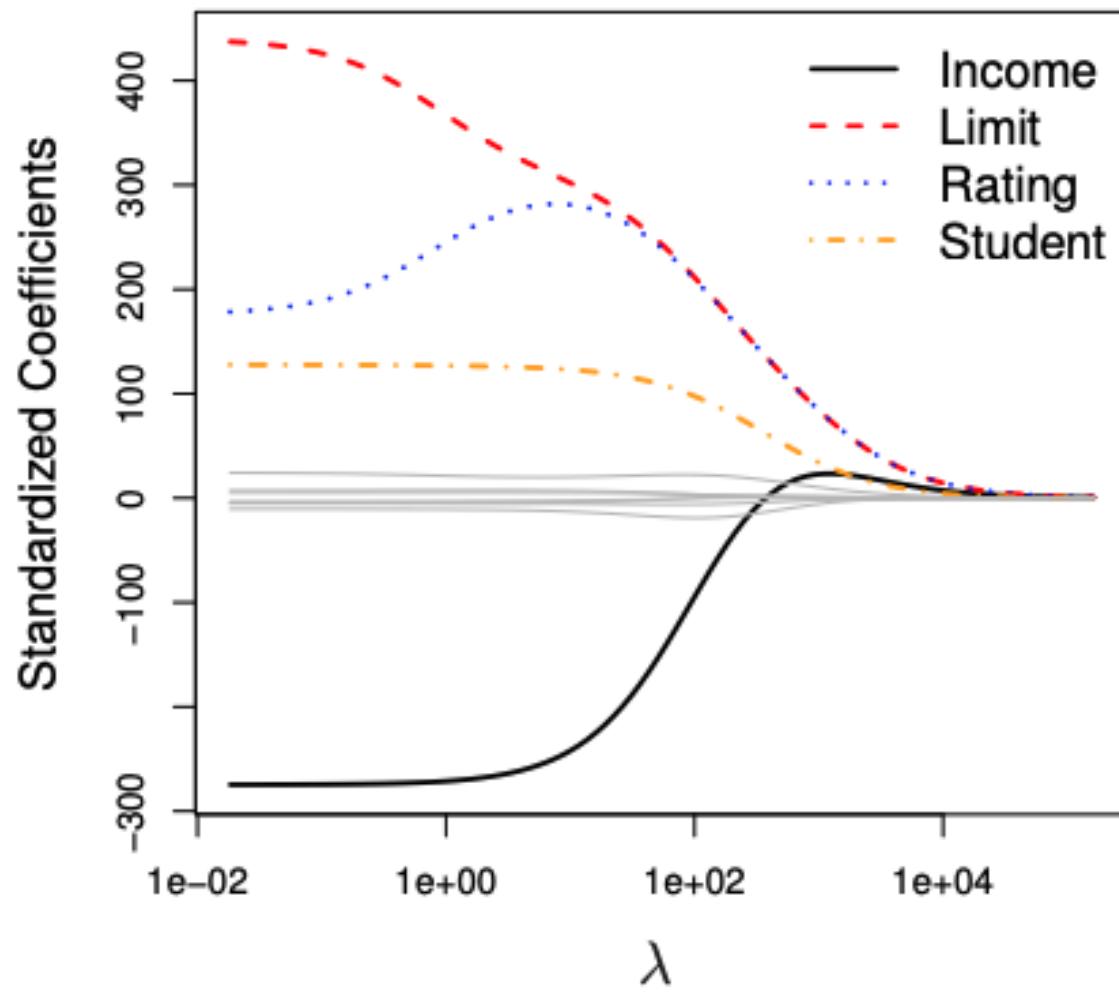
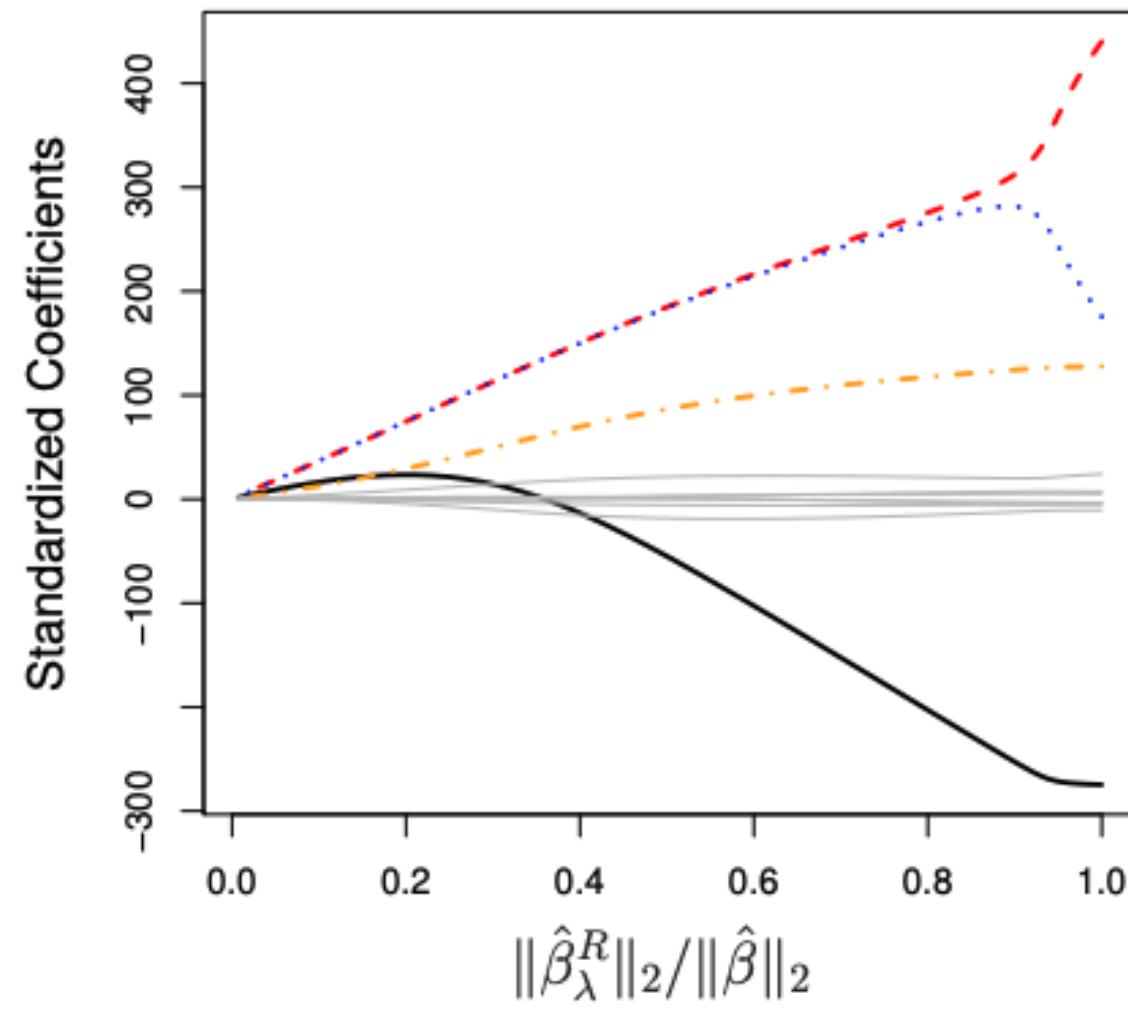
- Linear model:  $y = \beta_0 + \sum_{j=1}^p \beta_j x_j + \varepsilon$ .
- Ridge regression uses the  $\hat{\beta}^R$  that minimize

$$RSS + \lambda \sum_{j=1}^p \beta_j^2$$

- where  $\lambda \geq 0$  is a **tuning parameter**, to be determined separately.

# Ridge regression

- As with LS, **ridge regression** seeks coefficient estimates that fit the data well, by *making the RSS small*.
- However, the second term  $\lambda \sum_{j=1}^p \beta_j^2$  is small when the  $\beta$ 's are close to zero, and so it has the effect of *shrinking* the estimates of  $\beta_j$  towards zero.
- The tuning parameter  $\lambda$  is *determined by cross validation*, and serves to control the relative impact of these two terms on the regression coefficient estimates.



*Figure.* the credit data example: predicting **balance** from other 10 predictors (**age**, **cards**, **gender**, **student**, **limit**, ...)

## Some "*stupid questions*" in case anyone is confused...

- **Q:** How many "models" are there in the left panel?  
**A:** Infinite. Each  $\lambda \in (0.01, 10000)$  leads to some  $\beta_\lambda^R$ .
- **Q:** What are "1e-02" and "1e+04" in the left panel?  
**A:** That's how R represents  $10^{-2}$  and  $10^4$  (scientific e notation).
- **Q:** What's  $\|\hat{\beta}\|_2$  in the right panel?  
**A:** This is called **the  $\ell_2$  norm**:  $\|x\|_2 = \sqrt{x_1^2 + \cdots + x_p^2}$ .  
Specifically,  $\hat{\beta}$  is OLS estimator and  $\beta_\lambda^R$  is the Ridge estimator with the tuning parameter  $\lambda$ .
- **Q:** Why the range of x-axis is [0,1] in the right panel?

# Ridge regression: scaling of predictors

- The OLS estimates are *scale equivariant*: multiplying  $X_j$  by a constant  $c$  simply leads to a scaling of the LS estimates by a factor of  $1/c$ .
  - In other words, regardless of how the  $j$ -th predictor is scaled,  $\hat{\beta}_j X_j$  will remain the same.
- In contrast, the ridge regression coefficient estimates can *change substantially* when multiplying a given predictor by a constant, due to the penalty term in the ridge regression objective function.

## Ridge regression: scaling of predictors

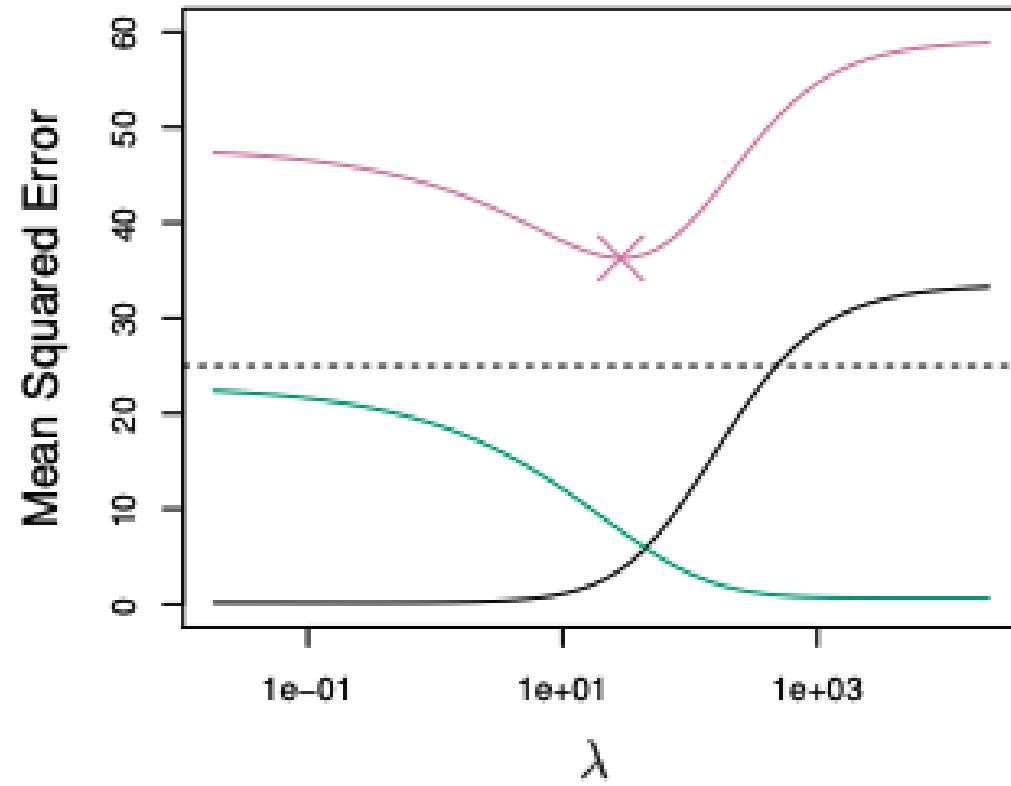
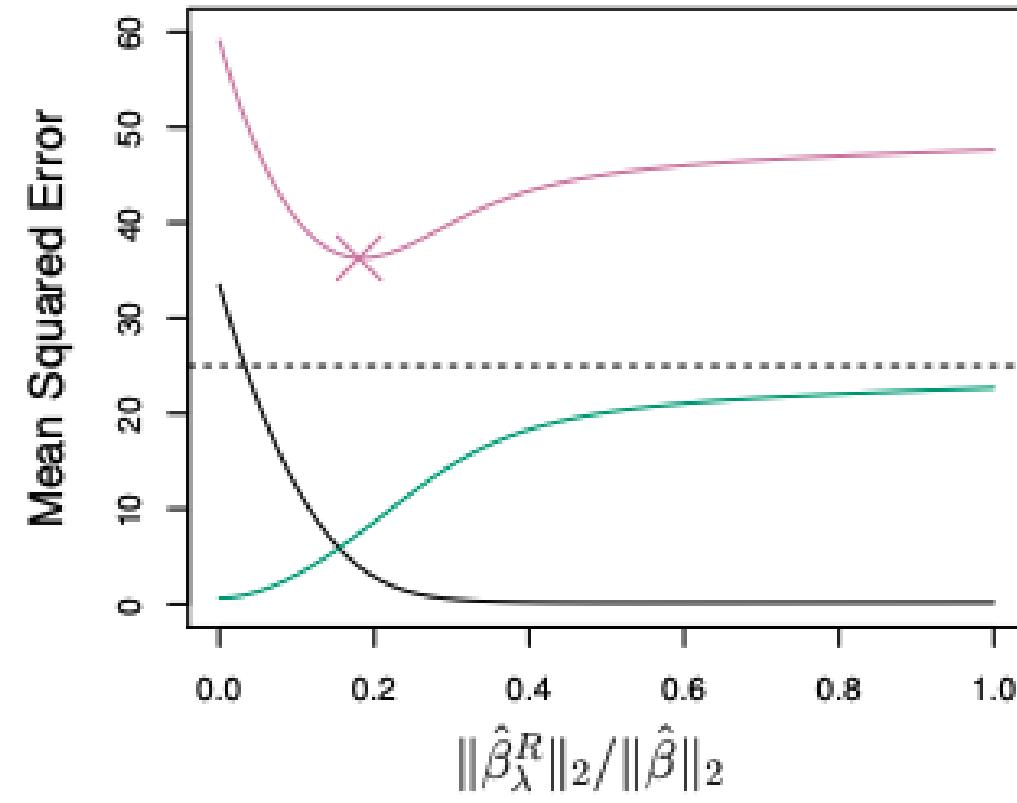
- Therefore, it is best to apply ridge regression after *standardizing the predictors*, using the formula:

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^N (x_{ij} - \bar{x}_j)^2}}$$

- Like OLS, Ridge regression allows an exact formula:

$$\hat{\beta}^R = (X^T X + \lambda I_p)^{-1} X^T Y$$

- You can see that the ridge estimates are *not* scale equivariant.



*Fig: Ridge regression and bias-variance tradeoff. **Squared bias** (black), **variance** (green), and **test mean squared error** (purple) for the ridge regression predictions on a simulated data set.*

## Least Absolute Shrinkage and Selection Operator (LASSO)

- **Lasso**, invented by Rob Tibshirani in 1996, is a relatively recent alternative to ridge regression.
- Ridge regression has one obvious disadvantage:
  - unlike subset selection, which will generally select models that involve just a subset of the variables, ridge regression will include all  $p$  predictors in the final model.
  - In other words, Ridge does *not select features*.
- Lasso is mainly proposed to overcome that disadvantage.

## Least Absolute Shrinkage and Selection Operator (LASSO)

- The lasso coefficients,  $\beta_{\lambda}^L$ , minimize the quantity

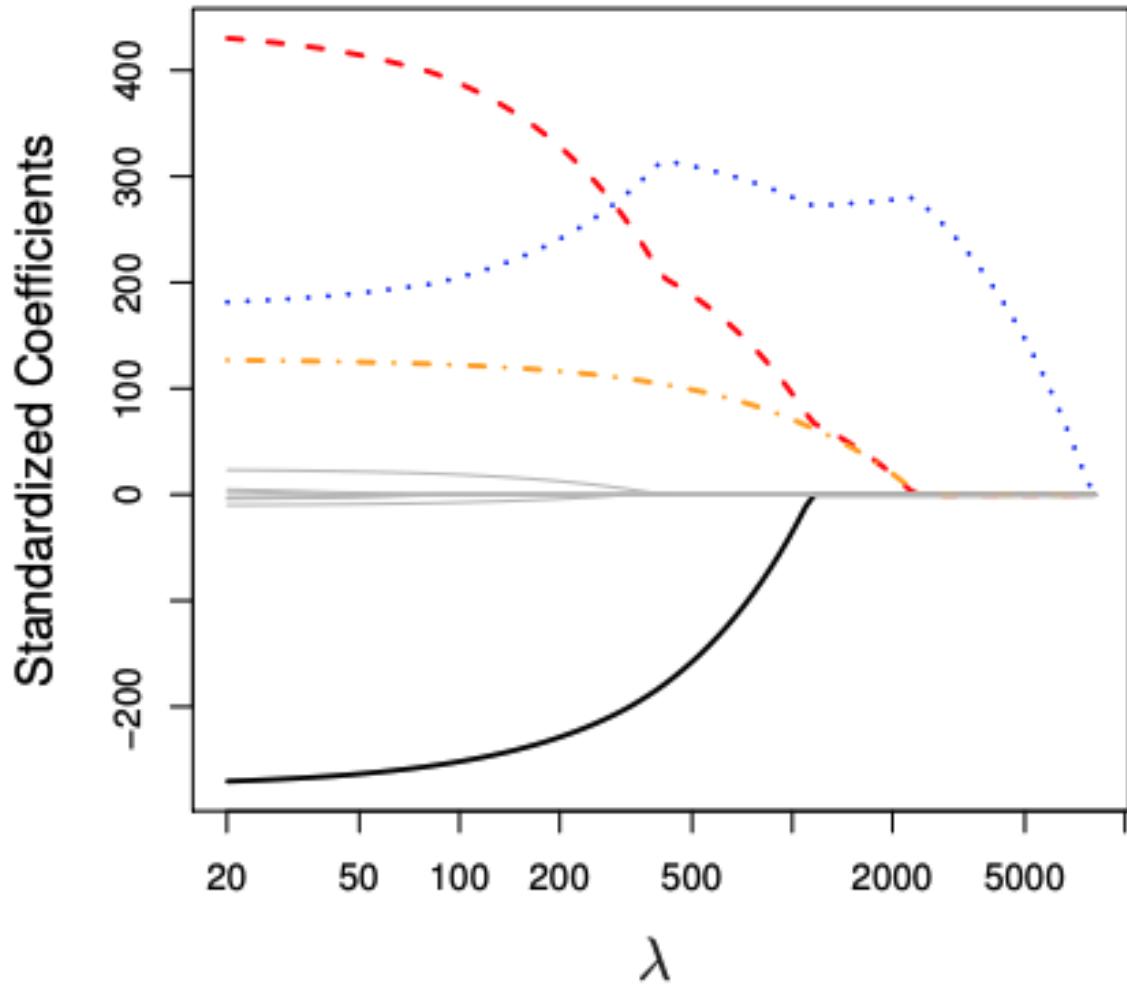
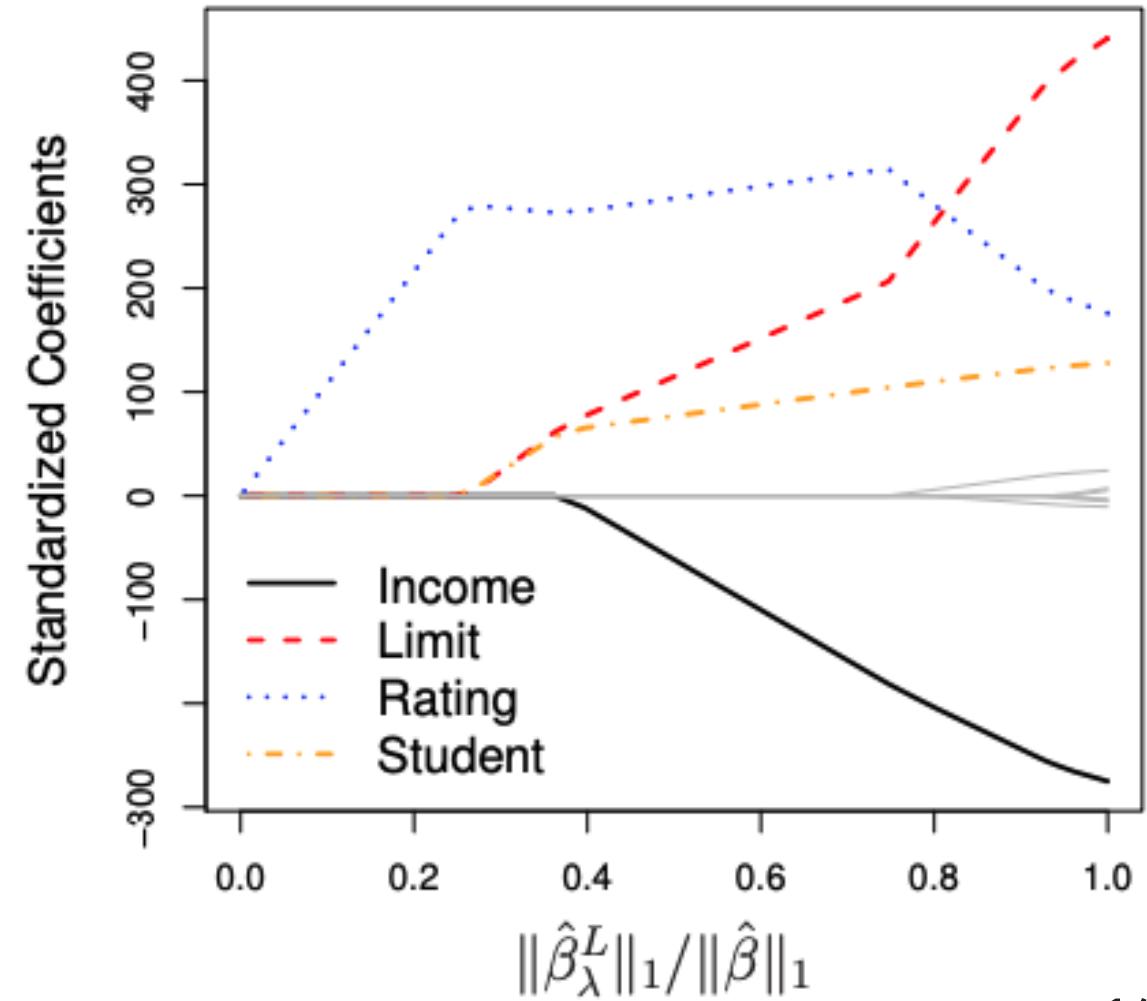
$$RSS + \lambda \sum_{j=1}^p |\beta_j|$$

- In other words, the lasso uses an  $\ell_1$  (pronounced “ell 1”) **penalty** instead of an  $\ell_2$  penalty.
  - The  $\ell_1$  norm of a coefficient vector  $\beta$  is given by  $||\beta||_1 = \sum_{j=1}^p |\beta_j|$ .

## Lasso v.s. Ridge Regression

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero.
- However, in the case of the lasso, the  $\ell_1$  penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter  $\lambda$  is sufficiently large.
- Hence, much like best subset selection, the lasso *performs variable selection*.
- We say that the lasso yields **sparse models** – that is, models that involve only a subset of the variables.

# Example: Credit dataset and lasso



## Review: Lagrangian of an optimization problem

One can show that the lasso and ridge regression coefficient estimates solve the problems

$$\min \sum_{i=1}^N \left( y_i - f_L(x_i) \right)^2 \text{ s.t. } \sum \beta_j^2 \leq s \text{ (Ridge)}$$

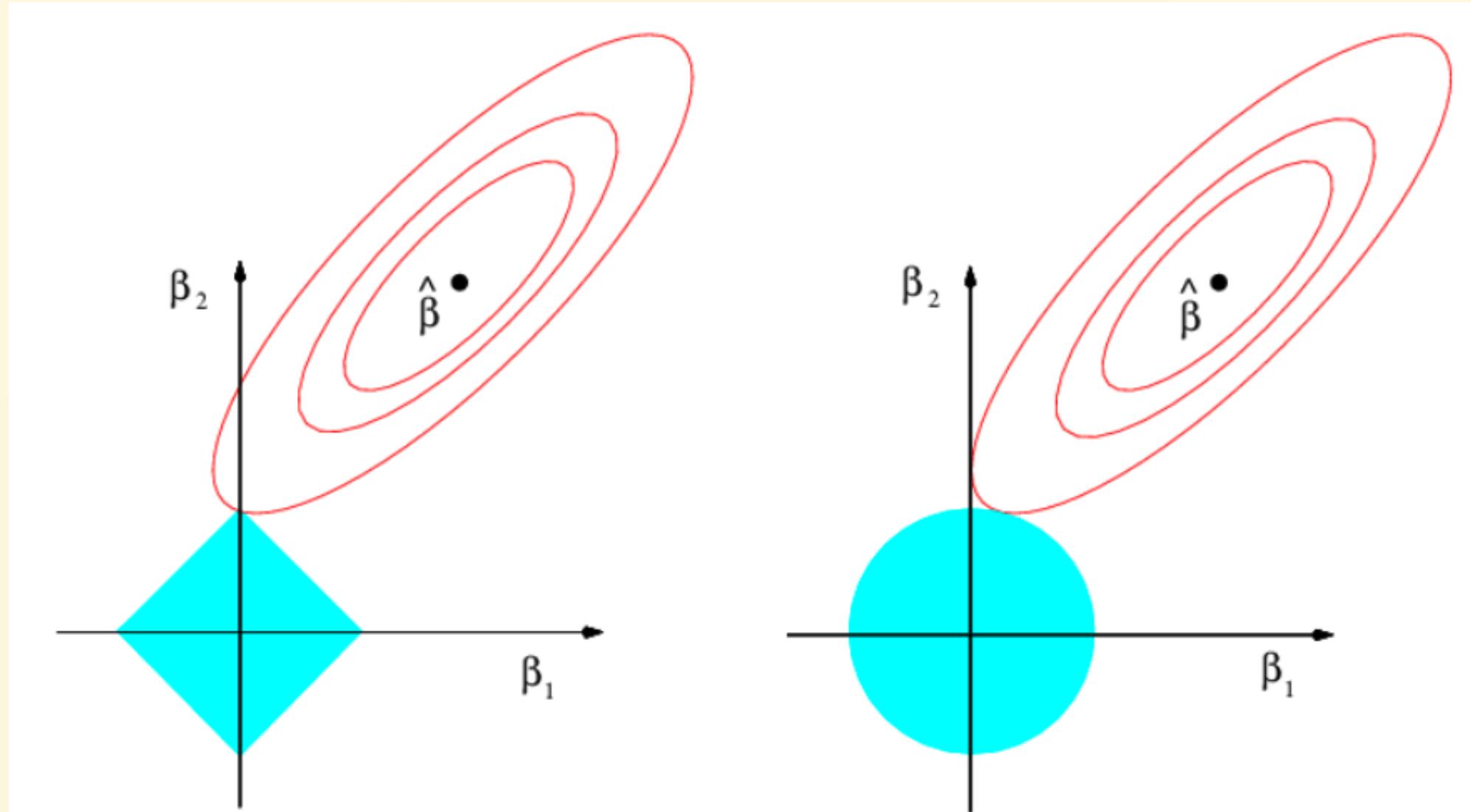
$$\min \sum_{i=1}^N \left( y_i - f_L(x_i) \right)^2 \text{ s.t. } \sum |\beta_j| \leq s \text{ (Lasso)}$$

respectively, where  $f_L(x_i) = \beta_0 + \sum_{j=1}^p \beta_j x_j$ .

# Why LASSO performs feature selection while Ridge Regression does not?

- Ridge regression uses  $\ell_2$  penalty. So in the optimization, the search area is a circle, which leads to an *interior solution*.
- Lasso uses  $\ell_1$  penalty. So in the optimization, the search area is a square, which leads to an *corner solution*.

# Lasso v.s. Ridge Regression: illustration



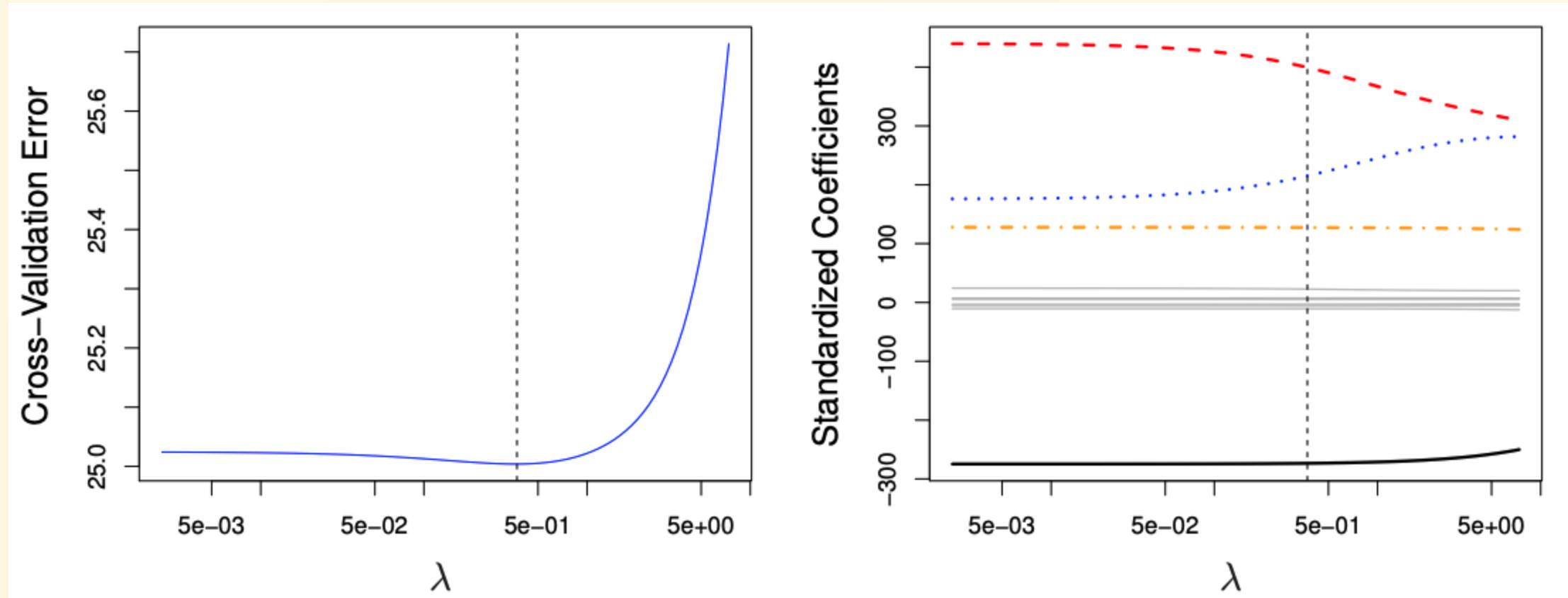
## Lasso v.s. Ridge regression on predicting power

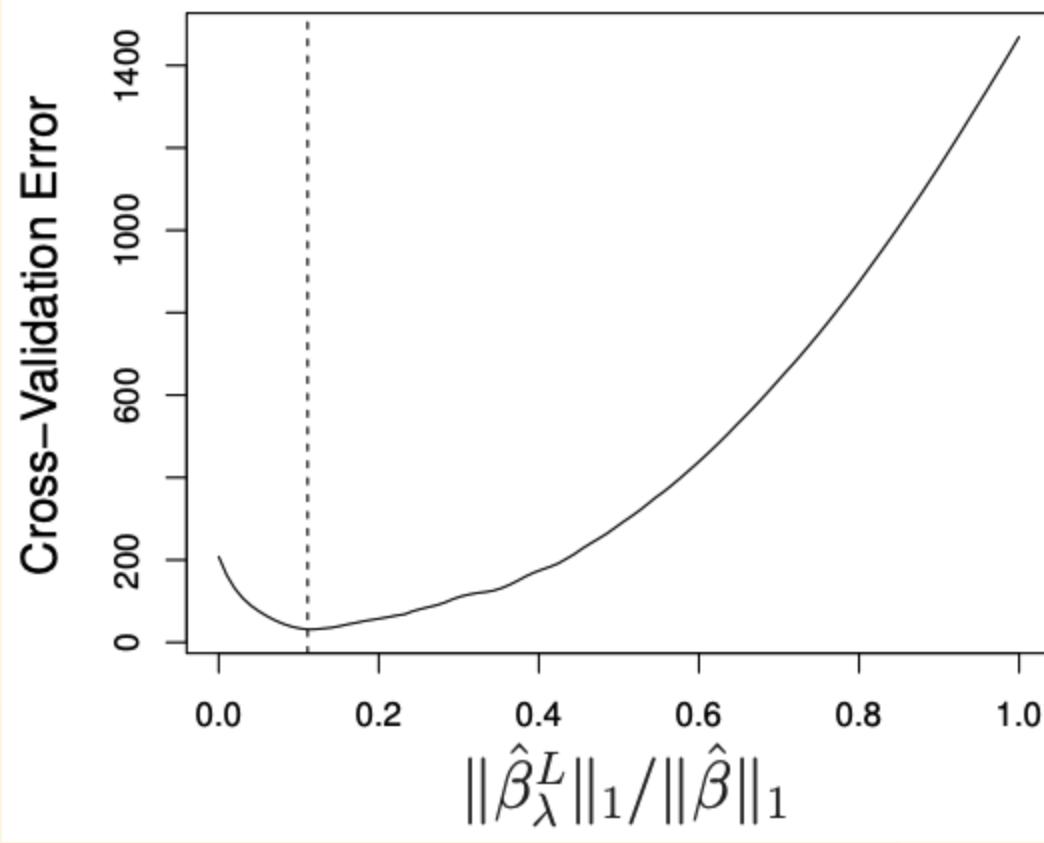
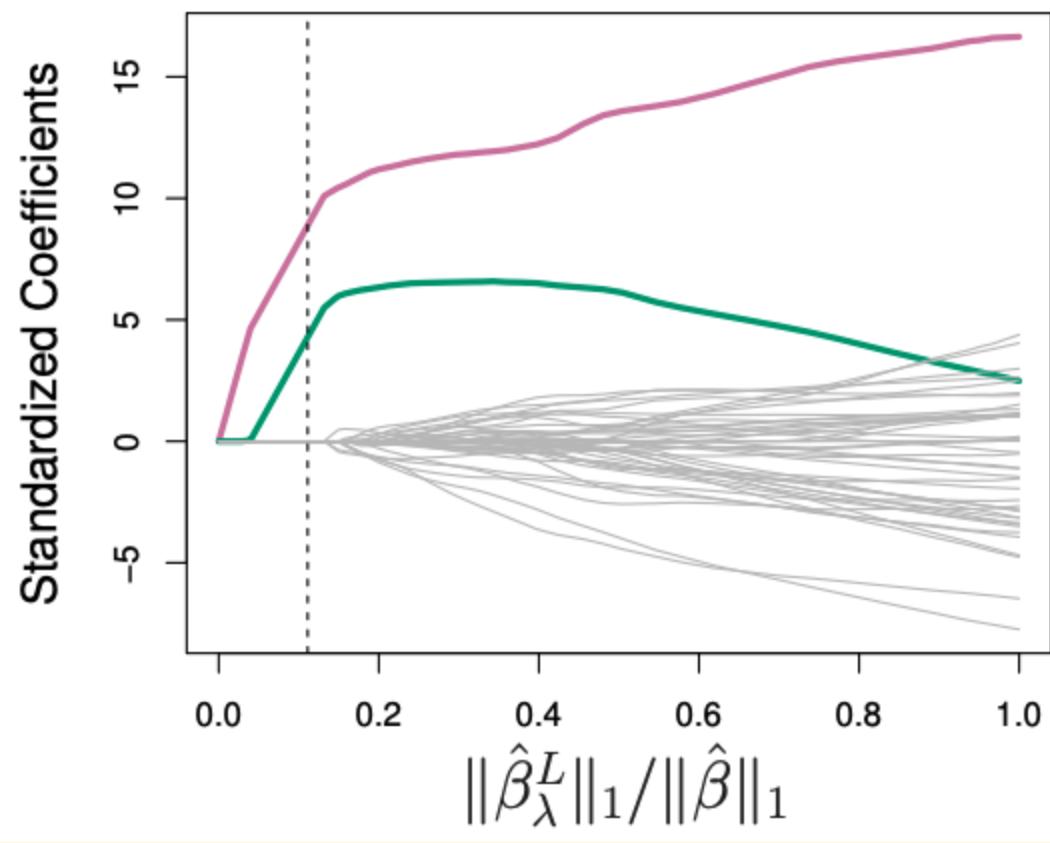
- In general, one might expect the lasso to perform better when the response is a function of *only a relatively small* number of predictors.
- However, the number of predictors that is related to the response is never known *a priori* for real data sets.
- One needs to use cross-validation to determine which approach is better on a particular problem.

# Selecting the Tuning Parameter

- For both Ridge Regression and Lasso, we need to do cross-validation to select a value for the tuning parameter  $\lambda$  (or equivalently, the value of the constraint  $s$ ):
  1. We choose a grid of  $\lambda$  values, and compute the cross-validation error rate for each value of  $\lambda$ .
  2. We then select the tuning parameter value for which the cross-validation error is smallest.
  3. Finally, the model is re-fit using all of the available observations and the selected value of  $\lambda$ .

*Fig: Credit data example.* Cross-validation errors that result from applying **ridge regression** to the Credit data set.





*Fig: CV on lasso.* Ten-fold cross-validation MSE for the **lasso**, applied to the sparse simulated data set.