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Shrinkage Methods

e JS Estimators imply that we can fit a model containing all p

predictors using a technique that shrinks the coefficient
estimates towards zero.

e |t turns out that shrinking the coefficient estimates can
significantly reduce their variance, and thus can improve the fit.

e Two popular shrinkage methods in the context of linear model:
Ridge Regression and lasso.



From OLS to Ridge regression

e Linear model: fr(x) = By + Z?:l B 7

 Recall that the LS fitting procedure estimates 5y, 81, ..., B;
using the values that minimize RSS over the training data:



From OLS to Ridge regression

e Linear model: y = By + Z§:1 Biz; + €.

e Ridge regression uses the BR that minimize

p
RSS+A) f;
j=1

e where A > 0 is a tuning parameter, to be determined
separately.



Ridge regression

e As with LS, ridge regression seeks coefficient estimates that fit
the data well, by making the RSS small.

e However, the second term A Z?:l 5]2 is small when the 3's are
close to zero, and so it has the effect of shrinking the estimates
of B; towards zero.

e The tuning parameter X\ is determined by cross validation, and

serves to control the relative impact of these two terms on the
regression coefficient estimates.
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Figure. the credit data example: predicting balance from other 10
predictors (age, cards, gender, student, limit, ...) 6



Some "stupid questions” in case anyone is confused...

e Q: How many "models" are there in the left panel?
A: Infinite. Each A € (0.01,10000) leads to some 3}’.

e Q: What are "1e-02" and "1e+04" in the left panel?
A: That's how R represents 10~2 and 10* (scientific e notation).

e Q: What's || 8|2 in the right panel:

A: This is called the /5 norm: ||z |

?

_ 2
5 = ;U1_|_..._|_33129.

Specifically, ,3 Is OLS estimator and Bf Is the Ridge estimator

with the tuning parameter A.

e Q: Why the range of x-axis is [0,1] in the right panel?



Ridge regression: scaling of predictors

e The OLS estimates are scale equivariant: multiplying X; by a
constant ¢ simply leads to a scaling of the LS estimates by a
factor of 1/c.

o In other words, regardless of how the j-th predictor is scaled,
B;X; will remain the same.

e In contrast, the ridge regression coefficient estimates can
change substantially when multiplying a given predictor by a
constant, due to the penalty term in the ridge regression
objective function.



Ridge regression: scaling of predictors

e Therefore, it Is best to apply ridge regression after
standardizing the predictors, using the formula:

e Like OLS, Ridge regression allows an exact formula:

A

Bt = (X'X + A1) 'Xx'Y
p

e You can see that the ridge estimates are not scale equivariant.
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Fig: Ridge regression and bias-variance tradeoff. Squared bias (
black), variance (green), and test mean squared error (purple)
for the ridge regression predictions on a simulated data set. 10



Least Absolute Shrinkage and Selection Operator (LASSO)

e Lasso, invented by Rob Tibshirani in 1996, is a relatively recent
alternative to ridge regression.

e Ridge regression has one obvious disadvantage:

o unlike subset selection, which will generally select models
that involve just a subset of the variables, ridge regression

will include all p predictors in the final model.

o In other words, Ridge does not select features.

e Lasso is mainly proposed to overcome that disadvantage.
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Least Absolute Shrinkage and Selection Operator (LASSO)

e The lasso coefficients, ﬁf, minimize the quantity
p
RSS+A) |8
j=1

e In other words, the lasso uses an ¢; (pronounced “ell 1”)
penalty instead of an £9 penalty.

o The £1 norm of a coefficient vector 3 is given by

18]l = 2251 18-
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Lasso v.s. Ridge Regression

As with ridge regression, the lasso shrinks the coefficient
estimates towards zero.

However, in the case of the lasso, the £; penalty has the effect
of forcing some of the coefficient estimates to be exactly equal

to zero when the tuning parameter A is sufficiently large.

Hence, much like best subset selection, the lasso performs
variable selection.

We say that the lasso yields sparse models — that is, models
that involve only a subset of the variables.
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Example: Credit dataset and lasso
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Review: Lagrangian of an optimization problem

One can show that the lasso and ridge regression coefficient
estimates solve the problems

mlnz (yz fr(x;) )2 s.t. ZB; < s (Ridge)

mlnz (yz fr(x;) )2 S.t. Z B8] < s (Lasso)

respectively, where fr(z;) = Bo + Z§:1 Bix;.
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Why LASSO performs feature selection while Ridge
Regression does not?

e Ridge regression uses £5 penalty. So in the optimization, the
search area is a circle, which leads to an interior solution.

e Lasso uses #1 penalty. So in the optimization, the search area is
a square, which leads to an corner solution.
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Lasso v.s. Ridge Regression: illustration
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Lasso v.s. Ridge regression on predicting power

e In general, one might expect the lasso to perform better when

the response is a function of only a relatively small number of
predictors.

e However, the number of predictors that is related to the
response is never known a priori for real data sets.

e One needs to use cross-validation to determine which approach
Is better on a particular problem.
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Selecting the Tuning Parameter

e For both Ridge Regression and Lasso, we need to do cross-
validation to select a value for the tuning parameter A (or

equivalently, the value of the constraint s):

1. We choose a grid of A values, and compute the cross-
validation error rate for each value of A.

2. We then select the tuning parameter value for which the
cross-validation error is smallest.

3. Finally, the model is re-fit using all of the available
observations and the selected value of .
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Fig: Credit data example. Cross-validation errors that result from

applying ridge regression to the Credit data set.

Cross-Validation Error

25.2 254 25.6

25.0

Standardized Coefficients

300

100

-100 O

-300

- o o o —
- .
—

w w0 ="
.................

.....

5e-03 5e-02

A

5e-01

5e+00

20



1400
15

. £

S ks

W S o |

c g - s

8 - 3

(41] _

0 B 77

L 3 N

| © C o

& | o

o 2

S 9 O o

(J ﬁ I a I

c. —

I I I I I I I I I I I I
0.0 0.2 0.8 1.0 0.0 0.2 0.8 1.0

0.4 0.6 0.4 0.6
1BXN1/11 81l 1B N1/11 Bl

Fig: CV on lasso. Ten-fold cross-validation MSE for the lasso,
applied to the sparse simulated data set.
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