

Intro to Trees

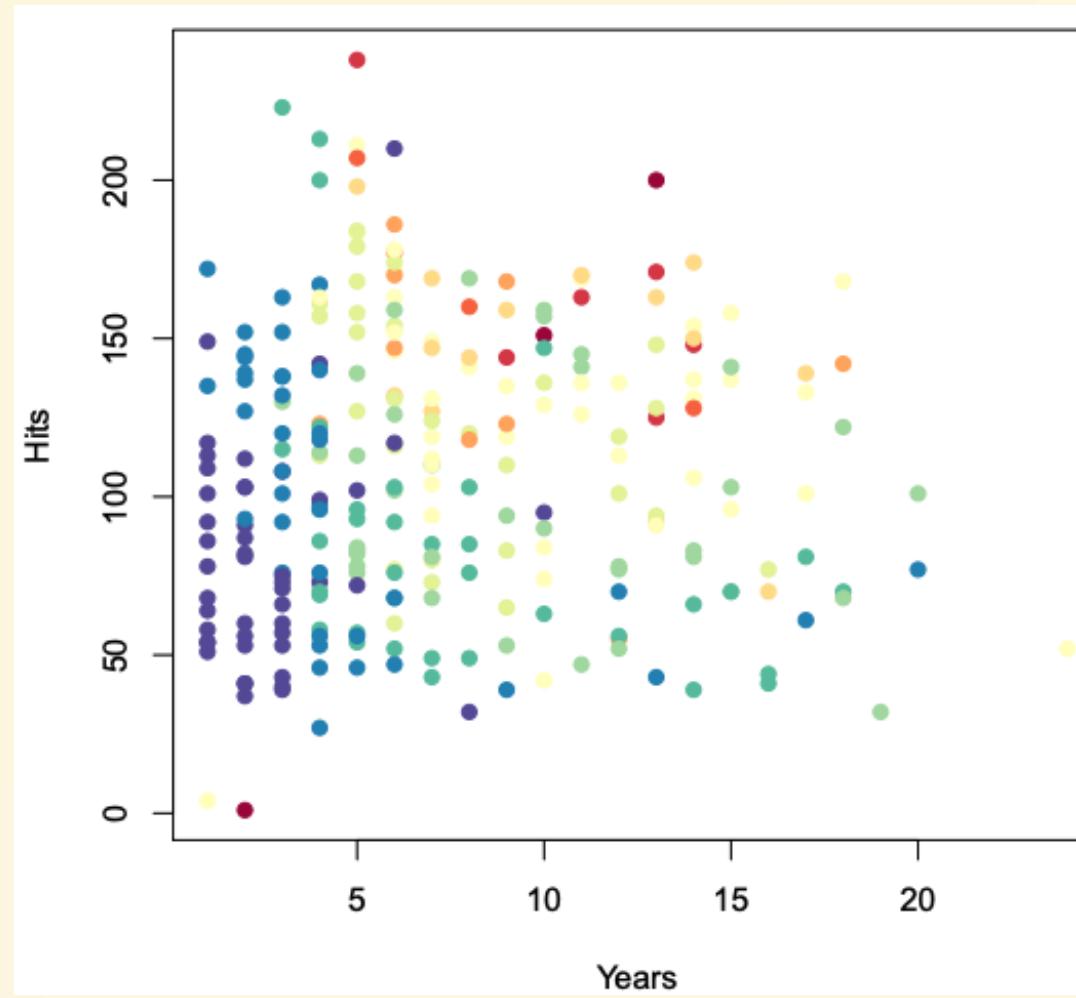
Instructor: Haoran LEI

Hunan University

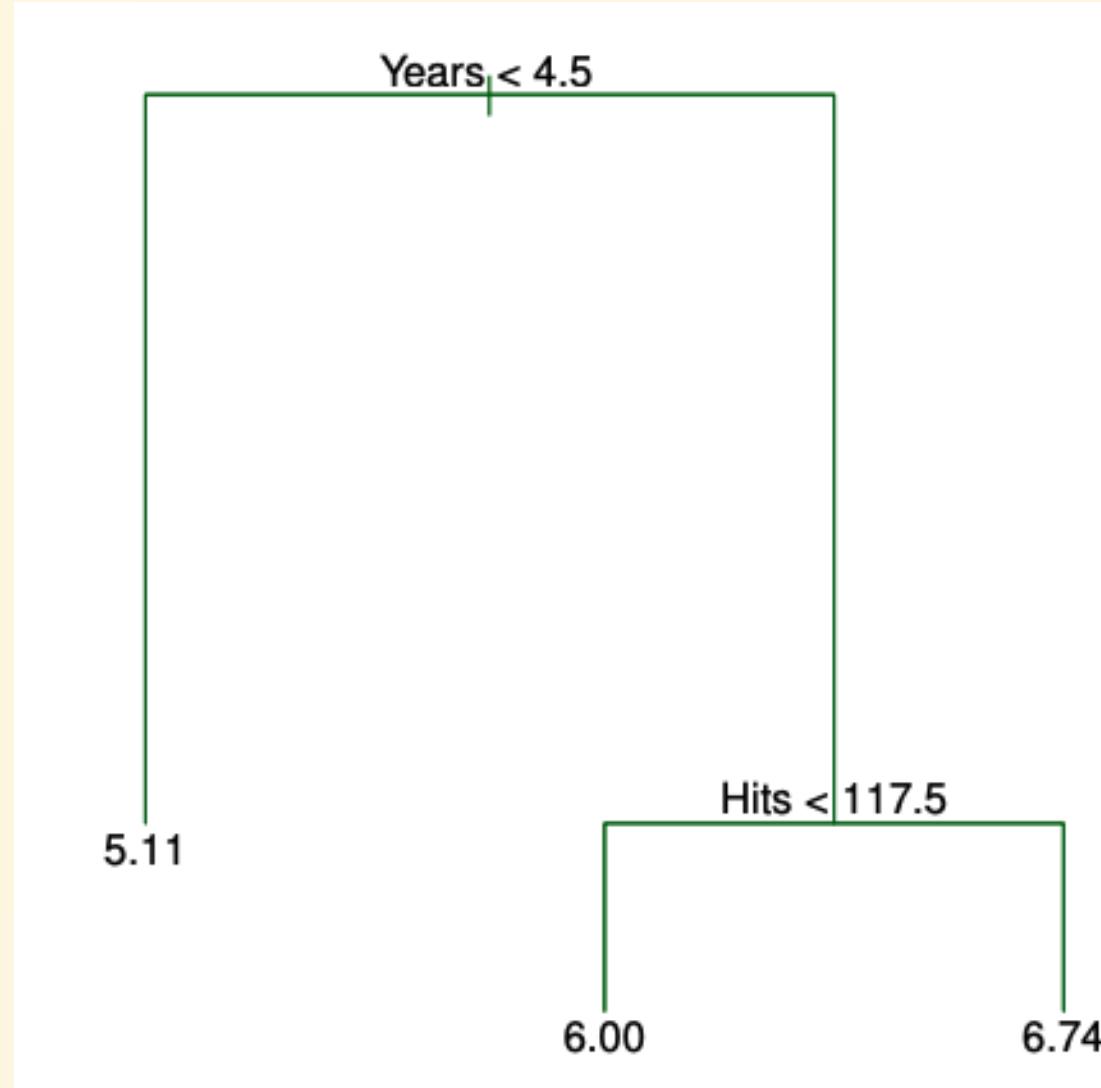
Tree-based Methods

- We describe **tree-based methods** for regression (and classification).
- These involve *stratifying* (分层) or *segmenting* (分割) the predictor space into a number of simple regions.
- Since the set of splitting rules used to segment the predictor space can be summarized in a tree, these types of approaches are known as *decision-tree* methods.

Baseball salary data: how would you stratify it?

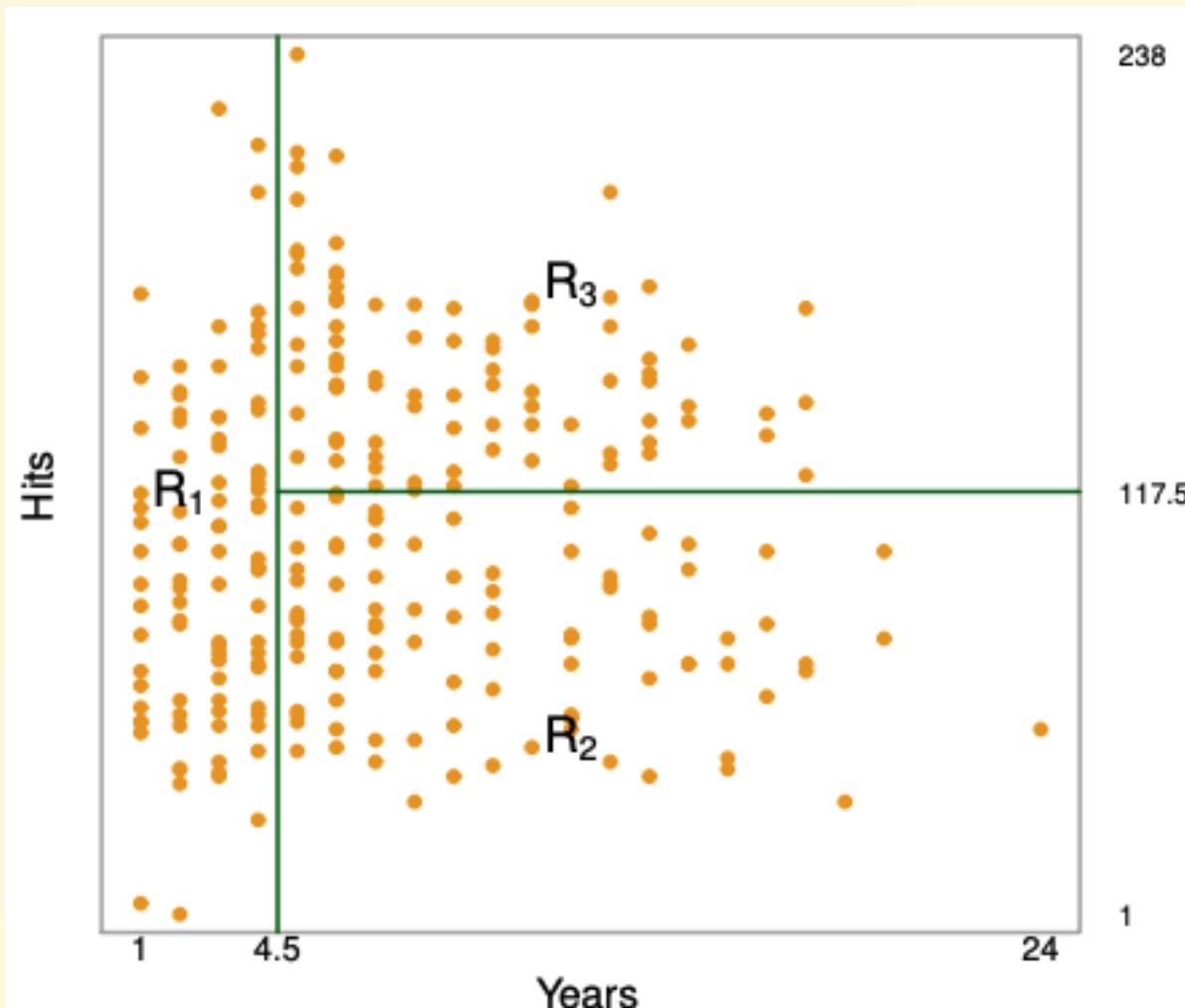


Salary is color-coded from **low** (blue, green) to **high** (yellow, red)



Example: Stratifying Baseball salary data

- The tree stratifies (segments) the players into three regions of predictor space: R_1, R_2, R_3 .



Terminology for Trees

- The regions R_1 , R_2 , and R_3 are known as *terminal nodes* (or *leaves*).
- Decision trees are typically drawn *upside down*, in the sense that the leaves are at the bottom of the tree.
- The points along the tree where the predictor space is split are referred to as *internal nodes*.

Pros and Cons

- In the hitters tree, the two internal nodes are indicated by the text `Years < 4.5` and `Hits < 117.5`.
- Surely an over-simplification, but compared to a regression model, it is **easy to display, interpret and explain**.

Pros and Cons

- Tree-based methods are simple and useful for interpretation.
- However, they typically are not competitive with the best supervised learning approaches in terms of prediction accuracy.
- Hence we also discuss *bagging, random forests, and boosting*. These methods grow **multiple trees** which are then combined to yield a single consensus prediction.
- Combining a large number of trees can often result in dramatic improvements in **prediction accuracy**, at the expense of some **loss interpretation**.

Tree-building process

1. We divide the *predictor space* – that is, the set of possible values for X_1, X_2, \dots, X_p – into J distinct and non-overlapping regions, R_1, R_2, \dots, R_J .
2. For every observation that falls into the region R_j , we make the same prediction, which is simply the mean of the response values for the training observations in R_j .

More details of the tree-building process

- In theory, the regions could have any shape. However, we choose to divide the predictor space into high-dimensional rectangles, or *boxes*, for simplicity and for ease of interpretation of the resulting predictive model.
- The goal is to find *boxes* R_1, \dots, R_J that minimize the RSS (training error).

More details of the tree-building process

- However, even if we focus on boxes, it is still computationally infeasible to consider every possible partition of the feature space into J boxes.
- For this reason, we take a **top-down, greedy** approach that is known as *recursive binary splitting*.
 - It's **top-down** because it begins at the top of the tree and then successively splits the predictor space; each split is indicated via two new branches further down on the tree.
 - It is **greedy** because at each step of the tree-building process, *the best split is made at that particular step* (with no looking ahead)

Recursive binary splitting

- First, select the predictor X_j and the cutpoint s , such that this two-segmentation has the least RSS.

Recursive binary splitting

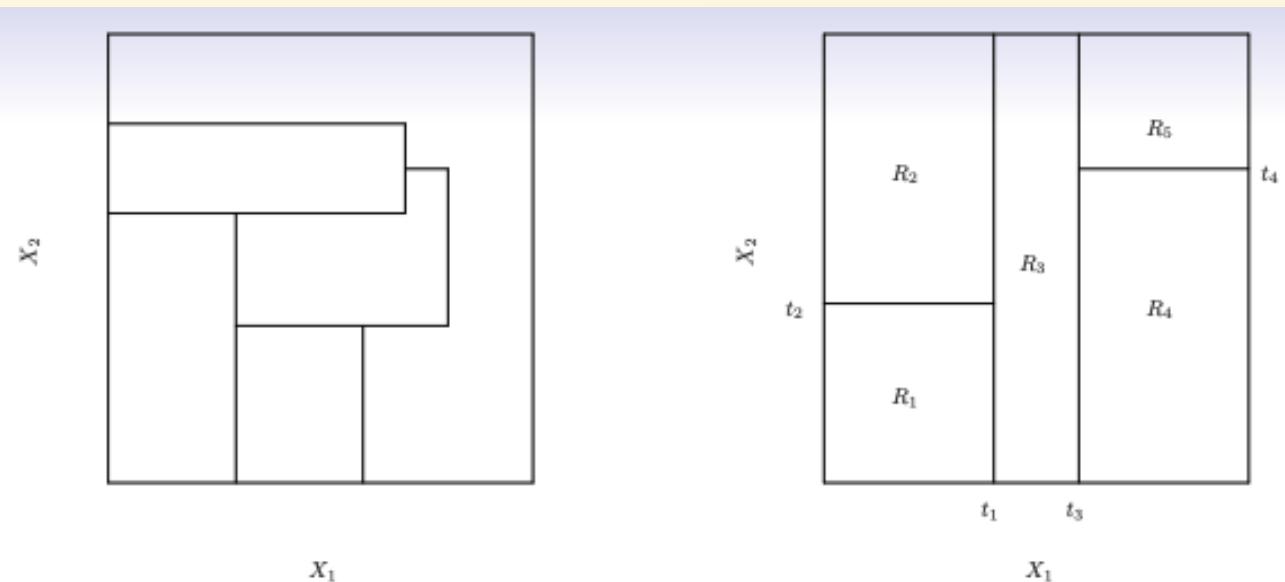
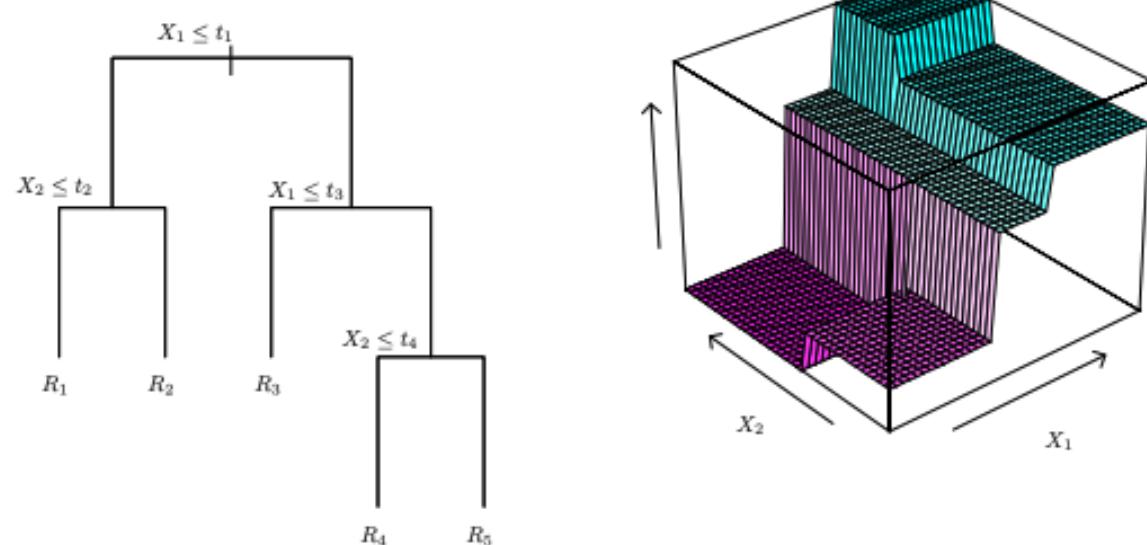
- First, select the predictor X_j and the cutpoint s , such that this two-segmentation has the least RSS.
- Second, we **repeat the process**: looking for the best predictor and best cutpoint in order to split the data further so as to minimize the RSS within each of the resulting regions.
 - However, this time, instead of splitting the entire predictor space, we split one of the two previously identified regions.
 - We now have three regions.

Recursive binary splitting

- First, select the predictor X_j and the cutpoint s , such that this two-segmentation has the least RSS.
- Second, we **repeat the process**: looking for the best predictor and best cutpoint in order to split the data further so as to minimize the RSS within each of the resulting regions.
- Again, we look to split one of these three regions further, so as to minimize the RSS.
 - The process continues until a stopping criterion is reached; Eg, we may continue until no region contains more than five observations.

Predictions based on (decision) trees

- We predict the response for a given test observation using the mean of the training observations in the region to which that test observation belongs.
- A five-region example ($J = 5$) of this approach is shown in the next slide.



Details of previous figure

- Top Left: A partition of two-dimensional feature space that could not result from recursive binary splitting.
- Top Right: The output of recursive binary splitting on a two-dimensional example.
- Bottom Left: A tree corresponding to the partition in the top right panel.
- Bottom Right: A perspective plot of the prediction surface corresponding to that tree.

Pruning a tree

- The process described above may produce good predictions on the training set, but is likely to **overfit** the data, leading to poor test set performance.
- A smaller tree with fewer splits (that is, fewer regions R_1, \dots, R_J) might lead to lower variance and better interpretation at the cost of a little bias.

Pruning a tree

- One possible alternative to the process described above is to grow the tree only so long as the decrease in the RSS due to each split exceeds some (high) threshold.
- This strategy will result in smaller trees, but is too short-sighted: a seemingly worthless split early on in the tree might be followed by a very good split – that is, a split that leads to a large reduction in RSS later on.

Pruning a tree: Cost complexity pruning

- A better strategy is to **firstly grow a very large tree T_0** , and then prune it back in order to obtain a subtree.
 - *Cost complexity pruning* (or *weakest link pruning*).

Pruning a tree: Cost complexity pruning

- Consider a sequence of trees indexed by a nonnegative tuning parameter α . For each value of α there corresponds **a subtree** $\mathbf{T}(\subset T_0)$ such that

$$\sum_{m=1}^T \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

- is as small as possible, where $|T|$ is the number of leaves of the tree T and R_m is the box corresponding to the m -th leave.

Choosing the best subtree

- The tuning parameter α controls a trade-off between the subtree's complexity and its fit to the training data.
- We select an optimal value $\hat{\alpha}$ using cross-validation.
- We then return to the full data set and obtain the subtree corresponding to $\hat{\alpha}$.

Summary: tree algorithm

1. Use *recursive binary splitting* to grow a large tree greedily on the training data --- get T_0 .
2. Apply *cost complexity pruning* to the large tree in order to obtain a sequence of best subtrees, as a function of α .

Summary: tree algorithm

1. Use *recursive binary splitting* to grow a large tree greedily on the training data --- get T_0 .
2. Apply *cost complexity pruning* to the large tree in order to obtain a sequence of best subtrees, as a function of α .

Summary: tree algorithm

3. Use *K-fold cross-validation* to choose α . For each $k = 1, \dots, K$:

- Repeat Steps 1 and 2 on the $(K - 1)/K$ -th fraction of the training data, excluding the k -th fold.
- Evaluate the mean squared prediction error on the data in the left-out k -th fold, as a function of α .

Average the results, and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Baseball example continued

- First, randomly divide the data set in half, yielding 132 observations in the training set and 131 observations in the test set.
- Then, build a large regression tree on the training data and varied α in order to create subtrees with different numbers of terminal nodes.
- Finally, perform 6-fold cross-validation in order to estimate the cross-validated MSE of the trees as a function of α .

T_0 :

