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A marketing example

e Bob founded a company selling baby shoes. He advertised the
company products via TV, Radio and Newspaper.

e Given the history data of Sales and advertising expense on TV,
Radio and Newspaper, can we

o predict "Sales" using these three inputs?

o know how can Bob advertise his goods better given a budget
set on advertising?

e What's your advice to Bob?
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Bob can do better using a model:
Sales ~ f(TV,Radio,Newspaper).

° is a response or target that Bob wishes to predict
o is a feature, or input, or predictor. We name it X;

e Likewise, is named as X, and so on.

X1
X = | X9 |, X is called the input vector.
X3



e Bob can write his model as:
Y = f(X) + ¢

e where € captures measurement errors and other discrepancies.

e What can Bob do with f?



With a good f, Bob can

e make predictions of sales (Y') at new points X = z;

e understand which components of X are important in explaining
Y, and which are irrelevant;

o In the salary case, "Seniority" and "Years of Education" are
have a big impact on Income, but "Marital Status" typically
does not.

e Depending on the complexity of f, we may be able to
understand how each component X, of X affects Y.



The ideal f(x), expected value and regression function

e Is there an ideal f(X)?

e What is a good value for f(X) given a specific value of X, say
X =47



The ideal f(x) and expected value

e Is there anideal f(X)?

e What is a good value for f(X) given a specific value of X, say
X =47

Theoretically, a very good value will be

F(4) = E[Y|X = 4]

e pronounced as "the expected value of Y given X being 4".

So, the ideal fis f(z) = E(Y|X = z), the regression function.




Regression function

e f(z) =E|Y|X = ] is formally called the regression function.

To make a prediction, we are calculating the conditional
expectations of Y given X:

f(z) = f(z1,22,23) = E[Y | X1 = 21, X5 = @2, X35 = 3]



Example: Use f(4) as a prediction for Y given X = 4.
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How to estimate f

 Typically, Bob has few (if any) data points with X = 4 exactly.

e So we cannot compute F|Y | X = z|!

e A good estimate f of f at x is

A

f(z) =Ave(Y|X € N(z))

where N (z) is some neighborhood of z.
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Example: estimate f(4)

12



Nearest neighbor: pros and cons

Nearest neighbor averaging can be pretty good for small p — Ie,
p < 4 and large N

e We'll discuss smoother version, such as kernel and spline
smoothing later.

Nearest neighbor method is likely to perform poorly when p is
large.

e The curse of dimensionality.
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Nearest neighbor and the curse of dimensionality

Nearest neighbors estimates, f(z), tend to be far away in high
dimensions.

e We need to get a reasonable fraction of the IV values of y; to
average to bring the variance down, say 10%

e However, a 10% neighborhood in high dimensions need no
onger be local, so we lose the spirit of estimating

(Y | X = x) by local averaging.
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Parametric and structured models

The linear model is an important example of a parametric model:

fL(X) = Bo+ L1 X1+ -+ B X,

e Alinear model is specified by p + 1 parameters: the 3's

e Estimate the parameters by fitting the model to training data.
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Why linear model

e Linear models are almost never "correct"...

o Being correct means that the true relationship f(X) is linear
In Xl, 50 ¢ ,Xp

e However, a linear model fL(X) often serves as a good and
interpretable approximation to the unknown f(X).

e In many real usages, linear models are good enough.
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A linear model A quadratic model

fL(X):BO+BlX gives a fQ( ) = Bo + B1X + B2 X?
reasonable fit: fits slightly better:




Simulated example. Red points are simulated values for income
from the model (the blue surface):
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Linear regression model fit to the simulated data:
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fr = Bo + P1 x education + By x seniority
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More flexible regression model fs(education, seniority) fit to the
simulated data: thin-plate spline.
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Indeed, we can fine-tune the roughness of the spline fit. So the
fitted model makes no errors on all the training data! (Overfitting)

w}{:ﬂu‘
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Trade-offs

1. Prediction accuracy versus interpretability.
o Linear models are easy to interpret; thin-plate splines are
not.
2. Good fit versus over-fit or under-fit.
o How do we know when the fit is just right?

3. Parsimony versus black-box

o In general, a simpler model involving fewer variables is
better than a black-box predictor involving them all.
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Quantify model accuracy

e Suppose we fit a model f( ) to some training data
Tr = {z;,y;};",. We want to know how well it performs.

e We could compute the average squared prediction error over Tr

MSET, = Ave;cT, [yz - f(wz)]
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Quantify model accuracy

e Suppose we fit a model f( ) to some training data
Tr = {z;,y;};",. We want to know how well it performs.

e We could compute the average squared prediction error over Tr

A 2

MSET, = Ave;cT, [yz - f(wz)]

e Of course, simply looking at MSE, is biased in favor for more
overfit models
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Quantify model accuracy

e To overcome overfitting, we should compute MSE using fresh

test data: Te = {z;,y;} %,

MSE1e = Ave;cTe [yz — ]E(CEZ)} 2
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Quantify model accuracy

e To overcome overfitting, we should compute MSE using fresh

test data: Te = {z;,y;} %,

A

2
MSEte = Ave;cTe [yz - f(iEz)}
Principle: use different datasets for training and testing!

e In the industry practice, a standard workflow involves three
separate datasets: training data, validation data and test data.
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Training / Validation/ Test data

Suppose we have three candidate models:

1. fi(z1) = Bo + P11
2. fa(z1) = Bo + Biz1 + Pazi
3. fa(z1) = Bo + Biz1 + B24/T1




Training / Validation/ Test data

Suppose we have three candidate models:

1. fl(ml) =1.2+ 052131
2. fg(aﬁl) = 1.5+ 0.221 + 0233%

3. fs(x1) = 1.0 +0.621—0.2, /2

Step 1: use training data to train all three models.
Usually, this is to choose B¢, 81, B2 to minimize MSET,.
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Training / Validation/ Test data

Suppose we have three candidate models:

1. fl(ml) = 1.2+ 0.52;y — MSEy, = 30
2. fa(z1) = 1.5+ 0.227 + 0.222 =— MSEy, = 20 (Winner)
3. fg(xl) —1.0+0.62;—-0.2,/r71 — MSEy,; = 40

Step 2: use validation data to select the "best" one with minimal
MSEy .
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Training / Validation/ Test data

Suppose we have three candidate models:

1. fl(ml) =1.2+ 052131
2. fg(aﬁl) = 1.5+ 0.2 + 0233% — MSE 1. = 28

3. fs(x1) = 1.0 +0.621—0.2, /2

Step 3: use test data to assess model performance on new data.
The reported model performance should be based on the new test
data.
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Summary

To overcome overfit, use fresh data for model selection
(Validation data):

e Otheriwse, more flexible models (that are more likely to overfit
data) will always win.

To have an unbiased evaluation of the selected model, use fresh
data to evaluate model performance (Test data).
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Example 1: Black curve is truth. Red curve (right) is MSE on Te,

grey curve is MSE on Tr. Orange, blue and green curves/squares
correspond to fits of different flexibility.
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Example 2: Here the truth Is smoother.
So the smoother fit (blue) and linear model (orange) do well.
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Example 3: Here the truth is wiggly and the noise iIs low.
So the most flexible fits (gsreen) perform best.
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Bias-Variance Trade-off
We have fit a model to some training data Tr.

Let (zg, yo) be a test observation drawn from the population.
If the true modelis Y = f(X) + ¢, then

A

5 [(wo — £(20))*] = Var[f(@0)] + Vare] + (Bias|f(z0)])

2
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Bias-Variance Trade-off
We have fit a model to some training data Tr.

Let (zg, yo) be a test observation drawn from the population.
If the true modelis Y = f(X) + ¢, then

A A

5[(u0 — £(20))?] = Varlf(w0)] + Varle] + (Bias[f(z0)])

e The expectation averages over the variability of yg and the
variability in Tr.

A

« Bias[f(x0)] = E[f(x0)] — f(z0)
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Bias-Variance Trade-off

R 2

[(un -~ Fan))?) = VarlF(e0)] + Varl] + (Bias{f(on)

e Typically as the flexibility of f increases, its variance increases,
and its bias decreases.

e So choosing the flexibility based on average test error amounts
to a bias-variance trade-off.

e Bias-Variance trade-off provides a new perspective to
understand overfitting.
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Homework: Explain the three graphs in the previous slide

e |.e., explain the bias-variance tradeoff in the three cases in
your own words. You do not need to use math in the
explanations, but feel free to use some math if necessary.

e In the first plot, the true model is non-linear and almost
quadratic; in the second plot, the true model is almost linear; in
the third, the true model is non-linear but the noise is very
small.

e Hint: You may read the Wiki on bias-variance tradeoff for
Inspirations.

e My Email: hlei@hnu.edu.cn
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https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
mailto:hlei@hnu.edu.cn

