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A marketing example

Bob founded a company selling baby shoes. He advertised the
company products via TV, Radio and Newspaper.

Given the history data of Sales and advertising expense on TV,
Radio and Newspaper, can we
predict "Sales" using these three inputs?
know how can Bob advertise his goods better given a budget
set on advertising?

What's your advice to Bob?
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Bob can do better using a model:

Sales ≈ f (TV, Radio, Newspaper).

Sales  is a response or target that Bob wishes to predict

TV  is a feature, or input, or predictor. We name it 

Likewise, Radio  is named as , and so on.

​ ​

X = ​ ​ ​ ,X  is called the input vector.
X ​1

X ​2

X ​3

X ​1

X ​2
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Bob can write his model as:

Y = f (X) + ϵ

where  captures measurement errors and other discrepancies.

What can Bob do with ?

ϵ

f
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With a good , Bob can

make predictions of sales ( ) at new points ;

understand which components of  are important in explaining
, and which are irrelevant;

In the salary case, "Seniority" and "Years of Education" are
have a big impact on Income, but "Marital Status" typically
does not.

Depending on the complexity of , we may be able to
understand how each component  of  affects .

f

Y X = x

X

Y

f

X ​j X Y
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The ideal , expected value and regression function

Is there an ideal ?

What is a good value for  given a specific value of , say
?

f (x)

f (X)

f (X) X

X = 4
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The ideal  and expected value

Is there an ideal ?

What is a good value for  given a specific value of , say
?

Theoretically, a very good value will be

f (4) = E[Y ∣X = 4]

pronounced as "the expected value of Y given X being 4".

So, the ideal  is , the regression function.

f (x)

f (X)

f (X) X

X = 4

f f (x) = E(Y ∣X = x)
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Regression function

 is formally called the regression function.

To make a prediction, we are calculating the conditional
expectations of  given :

f (x) = f (x ​, x ​, x ​) =1 2 3 E [Y ∣X ​ =1 x ​,X ​ =1 2 x ​,X ​ =2 3 x ​]3

f (x) = E[Y ∣X = x]

Y X
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Example: Use  as a prediction for  given .f (4) Y X = 4
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How to estimate 

Typically, Bob has few (if any) data points with  exactly.

So we cannot compute !

A good estimate  of  at  is

(x) =f̂ Ave(Y ∣X ∈ N (x))

where  is some neighborhood of .

f

X = 4

E [Y ∣X = x]

​f̂ f x

N (x) x
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Example: estimate ​(4)f̂
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Nearest neighbor: pros and cons

Nearest neighbor averaging can be pretty good for small   ie,
 and large 

We'll discuss smoother version, such as kernel and spline
smoothing later.

Nearest neighbor method is likely to perform poorly when p is
large.

The curse of dimensionality.

p –
p ≤ 4 N
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Nearest neighbor and the curse of dimensionality

Nearest neighbors estimates, , tend to be far away in high
dimensions.

We need to get a reasonable fraction of the  values of  to
average to bring the variance down, say 10%

However, a 10% neighborhood in high dimensions need no
longer be local, so we lose the spirit of estimating

 by local averaging.

​(x)f̂

N y ​i

E(Y ∣X = x)
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The curse of dimensionality: illustration
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Parametric and structured models

The linear model is an important example of a parametric model:

f ​(X) =L β ​ +0 β ​X ​ +1 1 ⋯ + β ​X ​p p

A linear model is specified by  parameters: the 's

Estimate the parameters by fitting the model to training data.

p + 1 β
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Why linear model

Linear models are almost never "correct"...
Being correct means that the true relationship  is linear
in 

However, a linear model  often serves as a good and
interpretable approximation to the unknown .

In many real usages, linear models are good enough.

f (X)
X ​, … ,X ​1 p

​ ​(X)f̂L
f (X)
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A linear model
 gives a

reasonable fit:

A quadratic model

fits slightly better:
​ ​(X) =f̂L ​ ​ +β̂0 ​ ​Xβ̂1 ​ ​(X) =f̂Q ​ ​ +β̂0 ​ X +β̂1 ​ ​Xβ̂2

2
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Simulated example. Red points are simulated values for income
from the model (the blue surface):
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Linear regression model fit to the simulated data:

​ ​ =f̂L ​ ​ +β̂0 ​ ​ ×β̂1 education + ​ ​ ×β̂2 seniority 20



More flexible regression model (education, seniority) fit to the
simulated data: thin-plate spline.

​ ​f̂S
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Indeed, we can fine-tune the roughness of the spline fit. So the
fitted model makes no errors on all the training data! (Overfitting)
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Trade-offs

1. Prediction accuracy versus interpretability.
Linear models are easy to interpret; thin-plate splines are
not.

2. Good fit versus over-fit or under-fit.
How do we know when the fit is just right?

3. Parsimony versus black-box
In general, a simpler model involving fewer variables is
better than a black-box predictor involving them all.
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Quantify model accuracy

Suppose we fit a model  to some training data
. We want to know how well it performs.

We could compute the average squared prediction error over 

MSE ​ =Tr Ave [y ​ −i∈Tr i ​(x ​)]f̂ i
2

​(x)f̂

Tr = {x ​, y ​} ​i i i=1
N

Tr
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Quantify model accuracy

Suppose we fit a model  to some training data
. We want to know how well it performs.

We could compute the average squared prediction error over 

MSE ​ =Tr Ave [y ​ −i∈Tr i ​(x ​)]f̂ i
2

Of course, simply looking at  is biased in favor for more
overfit models

​(x)f̂

Tr = {x ​, y ​} ​i i i=1
N

Tr

MSE ​Tr
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Quantify model accuracy

To overcome overfitting, we should compute MSE using fresh
test data: 

MSE ​ =Te Ave ​[y ​ −i∈Te i ​(x ​)]f̂ i
2

Te = {x ​, y ​} ​i i i=1
M
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Quantify model accuracy

To overcome overfitting, we should compute MSE using fresh
test data: 

MSE ​ =Te Ave ​[y ​ −i∈Te i ​(x ​)]f̂ i
2

Principle: use different datasets for training and testing!

In the industry practice, a standard workflow involves three
separate datasets: training data, validation data and test data.

Te = {x ​, y ​} ​i i i=1
M
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Training / Validation/ Test data

Suppose we have three candidate models:

1. 

2. 

3. 

f ​(x ​) =1 1 β ​ +0 β ​x ​1 1

f ​(x ​) =2 1 β ​ +0 β ​x ​ +1 1 β ​x ​2 1
2

f ​(x ​) =3 1 β ​ +0 β ​x ​ +1 1 β ​ ​2 x ​1

28



Training / Validation/ Test data

Suppose we have three candidate models:

1. 

2. 

3. 

Step 1: use training data to train all three models.
Usually, this is to choose  to minimize .

f ​(x ​) =1 1 1.2 + 0.5x ​1

f ​(x ​) =2 1 1.5 + 0.2x ​ +1 0.2x ​1
2

f ​(x ​) =3 1 1.0 + 0.6x ​−0.2 ​1 x ​1

β ​, β ​, β ​0 1 2 MSE ​Tr
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Training / Validation/ Test data

Suppose we have three candidate models:

1.  

2.   (Winner)

3.  

Step 2: use validation data to select the "best" one with minimal
.

f ​(x ​) =1 1 1.2 + 0.5x ​1 ⟹ MSE ​ =Val 30

f ​(x ​) =2 1 1.5 + 0.2x ​ +1 0.2x ​1
2 ⟹ MSE ​ =Val 20

f ​(x ​) =3 1 1.0 + 0.6x ​−0.2 ​1 x ​1 ⟹ MSE ​ =Val 40

MSE ​Val
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Training / Validation/ Test data

Suppose we have three candidate models:

1. 

2.  

3. 

Step 3: use test data to assess model performance on new data.
The reported model performance should be based on the new test
data.

f ​(x ​) =1 1 1.2 + 0.5x ​1

f ​(x ​) =2 1 1.5 + 0.2x ​ +1 0.2x ​1
2 ⟹ MSE ​ = Te 28

f ​(x ​) =3 1 1.0 + 0.6x ​−0.2 ​1 x ​1
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Summary

To overcome overfit, use fresh data for model selection
(Validation data):

Otheriwse, more flexible models (that are more likely to overfit
data) will always win.

To have an unbiased evaluation of the selected model, use fresh
data to evaluate model performance (Test data).
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Example 1: Black curve is truth. Red curve (right) is MSE on ,
grey curve is MSE on . Orange, blue and green curves/squares
correspond to fits of different flexibility.

Te

Tr
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Example 2: Here the truth is smoother.
So the smoother fit (blue) and linear model (orange) do well.
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Example 3: Here the truth is wiggly and the noise is low.
So the most flexible fits (green) perform best.
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Bias-Variance Trade-off

We have fit a model to some training data .

Let  be a test observation drawn from the population.
If the true model is , then

E[(y ​ −0 ​(x ​)) ] =f̂ 0
2 Var[ ​(x ​)] +f̂ 0 Var[ϵ] + (Bias[ ​(x ​)])f̂ 0

2

Tr

(x , y ​)0 0

Y = f (X) + ϵ
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Bias-Variance Trade-off

We have fit a model to some training data .

Let  be a test observation drawn from the population.
If the true model is , then

E[(y ​ −0 ​(x ​)) ] =f̂ 0
2 Var[ ​(x ​)] +f̂ 0 Var[ϵ] + (Bias[ ​(x ​)])f̂ 0

2

The expectation averages over the variability of  and the
variability in .

Tr

(x , y ​)0 0

Y = f (X) + ϵ

y ​0

Tr

Bias[ ​(x ​)] =f̂ 0 E[ ​(x ​)] −f̂ 0 f (x ​)0 37



Bias-Variance Trade-off

E[(y ​ −0 ​(x ​)) ] =f̂ 0
2 Var[ ​(x ​)] +f̂ 0 Var[ϵ] + (Bias[ ​(x ​)])f̂ 0

2

Typically as the flexibility of  increases, its variance increases,
and its bias decreases.

So choosing the flexibility based on average test error amounts
to a bias-variance trade-off.

Bias-Variance trade-off provides a new perspective to
understand overfitting.

​f̂
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Bias-variance tradeoff for the three examples 39



Homework: Explain the three graphs in the previous slide

I.e., explain the bias-variance tradeoff in the three cases in
your own words. You do not need to use math in the
explanations, but feel free to use some math if necessary.

In the first plot, the true model is non-linear and almost
quadratic; in the second plot, the true model is almost linear; in
the third, the true model is non-linear but the noise is very
small.

Hint: You may read the Wiki on bias-variance tradeoff for
inspirations.

My Email: hlei@hnu.edu.cn 40

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
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