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Review

Supervised Learning:
Nearest neighbor, Linear regression

Tradeoffs:
1. Prediction accuracy versus interpretability.
2. Good fit versus over-fit or under-fit.
3. Parsimony versus black-box
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Review: Bias-variance tradeoff

In (most) models, we can reduce the variance of the parameter
estimated across samples by increasing the bias in the
estimated parameters.

Homework: Explain the three plots.
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Linear regression

Linear regression is (perhaps) the simplest approach to
supervised learning.

It assumes that the dependence of  on  are linear.

True regression functions are (almost) never linear.

Y X ​, … ,X ​1 p
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Although it may seem overly simplistic, linear regression is
extremely useful both conceptually and practically.
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Linear regression with a single predictor 

Model: 

 and  are two unknown constants that represent the
intercept and slope.

Given some estimates  and , we make the predictions:

​ =ŷ ​ ​ +β̂0 ​ ​xβ̂1

where  indicates a prediction of  given .
The hat symbol  denotes an estimated value.

X

Y = β ​ +0 β ​X +1 ϵ

β ​0 β ​1

​ ​β̂0 ​ ​β̂1

​ŷ Y X = x

^
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Least squares

Let  be the prediction for .

The -th residual: .

Define the residual sum of squares (RSS):

​ ​

RSS = (e ​) + ⋯ + (e ​)1
2

n
2

= (y ​ − ​ ​ − ​x ​) + ⋯ + (y ​ − ​ ​ − ​ ​x ​)1 β̂0 β̂1 1
2

n β̂0 β̂1 n
2

​ ​ =ŷi ​ ​ +β̂0 ​ ​x ​β̂1 i Y ​i

i e ​ =i y ​ −i ​ ​ŷi
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Least squares

Let  be the prediction for .

The -th residual: .

Define the residual sum of squares (RSS):

​ ​

RSS = (e ​) + ⋯ + (e ​)1
2

n
2

= (y ​ − ​ ​ − ​ ​x ​) + ⋯ + (y ​ − ​ ​ − ​ ​x ​)1 β̂0 β̂1 1
2

n β̂0 β̂1 n
2

Least squares: choose ,  to minimize RSS.
(Or minimizing  as we've seen in previous lecture slides)

​ ​ =ŷi ​ ​ +β̂0 ​ ​x ​β̂1 i Y ​i

i e ​ =i y ​ −i ​ ​ŷi

​ ​β̂0 ​ ​β̂1

MSE ​Tr
8



Least squares

The estimated values that minimize RSS are:

{ ​ ​

​ ​β̂1

​ ​β̂0

= ​

​(x ​ − )∑i i x̄ 2

​(x ​ − )(y ​ − ​)∑i i x̄ i ȳ

= ​ − ​ ​ȳ β̂1x̄

where  and  are the sample means.=x̄ ​ x ​/n∑i i ​ =ȳ ​ y ​/n∑i i
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Animation of LS regression line
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Example (advertising data)

Fig: The least squares fit for the regression of sales onto TV.

A linear fit captures the essence of the relationship, but it
seems somewhat deficient in the left of the plot. 11



Assessing the Accuracy of the LS Estimates

The standard error (SE) of an estimator reflects how it varies
under repeated sampling:

SE( ​ ​) =β̂1
2

​

​(x ​ − )∑i=1
n

i x̄ 2

σ2

Standard error is not the variance of the LS estimator. Instead,
it measures how accurate the LS estimator is. SE depends on:
1. the variance of noise: 

2. how "spread" our datas are: 

σ2

​(x ​ −∑i=1
n

i )x̄ 2
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Assessing the Accuracy of the LS Estimates

The standard error (SE) of an estimator reflects how it varies
under repeated sampling:

SE( ​ ​) =β̂1
2

​ , SE( ​ ​) =
​(x ​ − )∑i=1

n
i x̄ 2

σ2

β̂0
2 σ [ ​ +2

n

1
​ ]

​(x ​ − )∑i i x̄ 2

x̄2

Note: When  (variance of ) is unknown, use

=σ̂2
​ ​e ​

n − 1
1

i

∑ i
2

σ2 ϵ
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Confidence interval

A 95% confidence interval is defined as a range of values such
that "with 95% probability, the range will contain the true
unknown value of the parameter."

It has the form:

[ ​ ​ −β̂1 2 ⋅ SE( ​ ​), ​ ​ +β̂1 β̂1 2 ⋅ SE( ​ ​)]β̂1

A popular way of describing confidence intervals:

"I am 95% confident that the interval contains the true value."
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Hypothesis testing

Standard errors can also be used to perform hypothesis testing.

The most common hypothesis test involves testing the null
hypothesis  vs the alternative hypothesis :

H ​ :0  There is no relationship between X  and Y

H ​ :A  There is some relationship between X  and Y

H ​0 H ​A
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Hypothesis testing

Standard errors can also be used to perform hypothesis testing.

The most common hypothesis test involves testing the null
hypothesis  vs the alternative hypothesis :

H ​ :0 β ​ =1 0, H ​ :A β ​ =1  0

To test the null hypothesis, we compute a t-statistic given by:

t = ​

SE( ​ ​)β̂1

​ ​ − 0β̂1

H ​0 H ​A
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Hypothesis testing

Assuming  (ie,  holds), then  will follow the

t-distribution with  degrees of freedom.

β ​ =1 0 H ​0 t = ​

SE( ​ ​)β̂1

​ ​−0β̂1

n − 2
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Hypothesis testing

Assuming  (ie,  holds), then  will follow the

t-distribution with  degrees of freedom.

Using statistical software, it is easy to compute the probability
of observing any value equal or larger than .
We call this probability the p-value.

β ​ =1 0 H ​0 t = ​

SE( ​ ​)β̂1

​ ​−0β̂1

n − 2

∣t∣
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In practice, usually we say that the effects of  is significant
(rejecting ) when the p-value is less than .

You can see from the figure that p-values and confidence
intervals are just two sides of the same coin.

X

H ​0 0.05
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Results for the advertising data

            Coefficient Std. Error   t-statistic     p-value
Intercept        7.0325     0.4578         15.36    < 0.1%
TV               0.0475     0.0027         17.67    < 0.1%
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Assessing the Overall Accuracy of the Model

We compute the Residual Standard Error (RSE):

RSE = ​​RSS
n − 2

1

RSE is to RSS what standard error is to variance.
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Assessing the Overall Accuracy of the Model

R-squared is the fraction of variance explained:

R =2
​ =

TSS

TSS − RSS
1 − ​

TSS

RSS

where TSS  is the total sum of squares.

In the simple linear regression setting with one predictor, 
 where  is the (linear) correlation between  and .

= ​ e ​ =∑i i
2

​(y ​ −∑i i ​)ȳ 2

R =2

r2 r X Y
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Advertising data results

Quantity Value

Residual Standard Error 3.26

0.612R2
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Next: Multiple Linear Regression

We have focused on the simple linear regression model with one
predictor.

Now let's move on to Multiple Linear Regression; aka, linear
regression with multiple predictors!
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