

# Multiple linear regression

金融投资学

Instructor: Haoran LEI

Hunan University

# Multiple linear regression

Model:

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon$$

We interpret  $\beta_j$  as the **average effect** of a unit increase in  $X_j$  on  $Y$ , **holding all other predictors fixed** ("ceteris paribus").

# Multiple linear regression

Model:

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon$$

We interpret  $\beta_j$  as the **average effect** of a unit increase in  $X_j$  on  $Y$ , **holding all other predictors fixed** ("ceteris paribus").

In the advertising example:

$$\text{sales} = \beta_0 + \beta_1 \cdot \text{TV} + \beta_2 \cdot \text{radio} + \beta_3 \cdot \text{newspaper} + \epsilon$$

# Interpreting regression coefficients

The ideal scenario is when all predictors are **uncorrelated**:

- An increase in the value of  $X_1$  does not affect the value of  $X_2$
- A trial/experiment design is called a **balanced design** in that case, and each coefficient can be estimated and tested separately

Interpretations such as “*a unit change in  $X_j$  is associated with a  $\beta_j$  change in  $Y$ , while all the other variables stay fixed*”, are possible.

# Interpreting regression coefficients

- **Correlations amongst predictors** cause problems:
  1. The variance of all coefficients tends to increase, sometimes dramatically
  2. Interpretations become hazardous – when  $X_j$  changes, everything else changes.
- Claims of *causality* should be avoided for *observational data*
  - Identifying causality is a big topic in economics.  
We'll touch on that topic later in this course.

# The woes of (interpreting) regression coefficients

- The regression coefficient  $\beta_j$  estimates the expected change in  $Y$  per unit change in  $X_j$ , *with all other predictors held fixed.*
- When predictors are correlated, they *change together!*

## Two Examples

1.  $Y$  = total amount of paper money in your pocket;  
 $X_1$  = # of papers;  $X_2$  = # of 10- and 20- RMB papers.  
By itself, regression coefficients of  $Y$  on  $X_2$  will be  $> 0$ .  
But how about with  $X_1$  in the model?

## Two Examples

1.  $Y$  = total amount of paper money in your pocket;

$X_1$  = # of papers;  $X_2$  = # of 10- and 20- RMB papers.

By itself, regression coefficients of  $Y$  on  $X_2$  will be  $> 0$ .

But how about with  $X_1$  in the model?

2.  $Y$  = number of tackles by a football player in a season;

$W$  and  $H$  are his weight and height. Fitted regression model is

$\hat{Y} = b_0 + 0.5W - 0.10H$ . How do we interpret  $\hat{\beta}_2 < 0$ ?

# Interpreting regression coefficients

*“The only way to find out what will happen when a complex system is disturbed is to disturb the system, not merely to observe it passively.”* -- Fred Mosteller and John Tukey

- These are said by statisticians. What can we (economists) do to deal with correlations between  $X_i$ 's?

# Interpreting regression coefficients

*“The only way to find out what will happen when a complex system is disturbed is to disturb the system, not merely to observe it passively.”* -- Fred Mosteller and John Tukey

Economists Esther and Banerjee won Nobel Prize in 2019 for their usage of **‘randomised control trials’ (RCT)** in economics.



# Estimation and Prediction for Multiple Regression

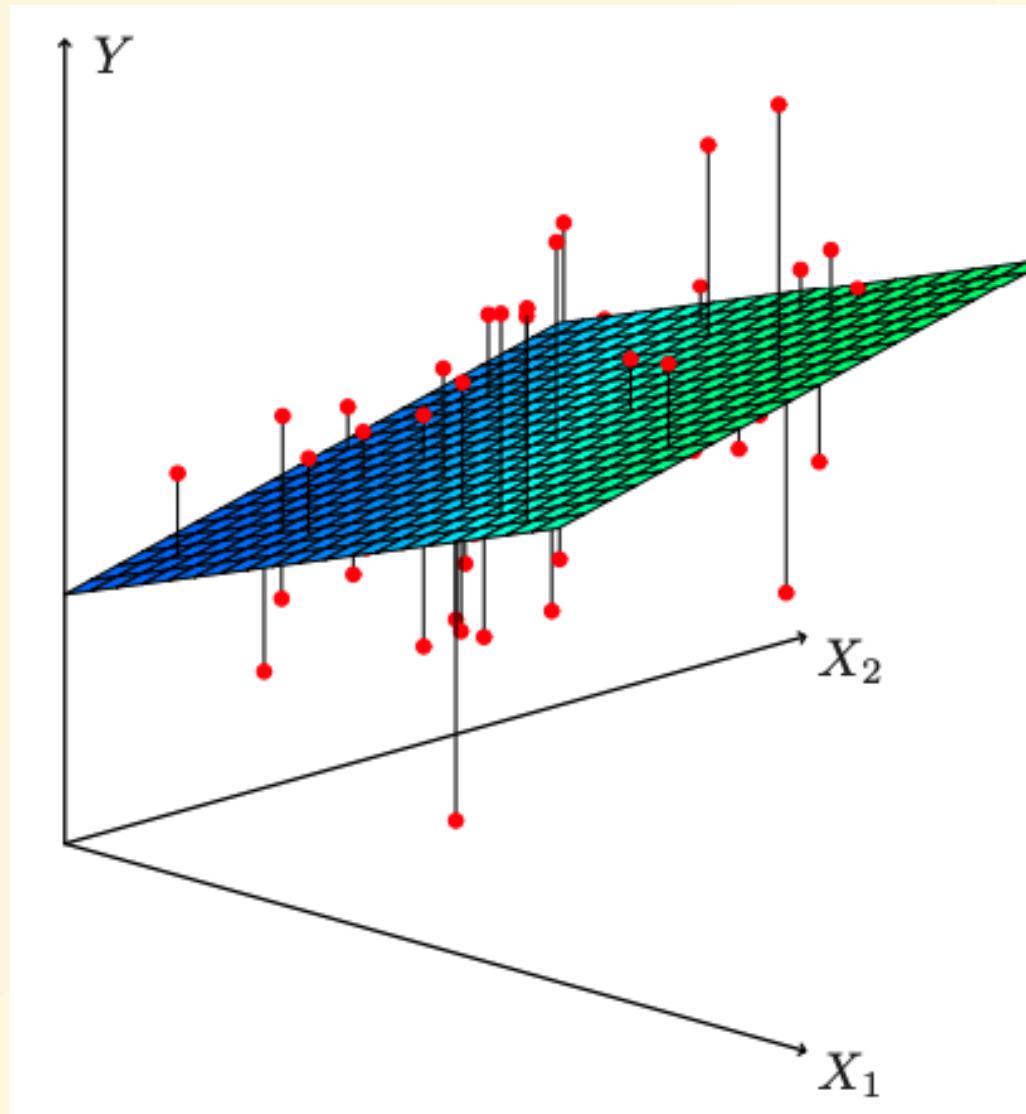
- Given estimates  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ , we can make predictions using:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

- LS estimators are obtained by minimizing the RSS:

$$\min_{\hat{\beta}_0, \dots, \hat{\beta}_p} \text{RSS} = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Example:  $p = 2$ .



## Results for advertising data

|           | Coefficient | Std. Error | t-statistic | p-value  |
|-----------|-------------|------------|-------------|----------|
| Intercept | 2.939       | 0.3119     | 9.42        | < 0.0001 |
| TV        | 0.046       | 0.0014     | 32.81       | < 0.0001 |
| radio     | 0.189       | 0.0086     | 21.89       | < 0.0001 |
| newspaper | -0.001      | 0.0059     | -0.18       | 0.8599   |

Correlations:

|           | TV     | radio  | newspaper | sales  |
|-----------|--------|--------|-----------|--------|
| TV        | 1.0000 | 0.0548 | 0.0567    | 0.7822 |
| radio     |        | 1.0000 | 0.3541    | 0.5762 |
| newspaper |        |        | 1.0000    | 0.2283 |
| sales     |        |        |           | 1.0000 |

## Some important questions

1. Is *at least one of the predictors*  $X_1, X_2, \dots, X_p$  useful in predicting the response?
2. Do *all the predictors* help to explain  $Y$  , or only *part of the predictors* useful?
3. How well does the linear model fit the data?

Q1: Is *at least one of the predictors* useful in predicting  $Y$ ?

- We can use the F-statistic:

$$F = \frac{(TSS - RSS)/p}{RSS/(n - p - 1)} \sim F_{p, n-p-1}$$

| Quantity                | Value |
|-------------------------|-------|
| Residual Standard Error | 1.69  |
| $R^2$                   | 0.897 |
| F-statistic             | 570   |

Q2: Do *all the predictors* help to explain  $Y$ , or only *part of the predictors* useful?

- Essentially, this is to **decide on the important variables**.
- The most direct approach is called all subsets or best subsets regression:
  - we compute the least squares fit for all possible subsets;
  - then choose between them based on some criterion that balances training error with model size.
- However, usually we cannot examine all possible models. For example, when  $p = 40$ , there are  $2^p \geq$  a billion models!

## Forward selection

- Begin with the *null model* — a model that contains an intercept but no predictors.
- Fit  $p$  simple linear regressions and add to the null model the variable that results in the **lowest RSS**.
- Add to that model the variable that results in the **lowest RSS** amongst all two-variable models.
- Continue until **some stopping rule** is satisfied, for example when all remaining variables have a p-value above some threshold

## Backward selection

- Start with *all variables* in the model.
- Remove the variable with the **largest p-value** – that is, the variable that is the least statistically significant.
- The new  $(p - 1)$ -variable model is fit, and the variable with the **largest p-value** is removed.
- Continue until a **stopping rule** is reached. For instance, we may stop when all remaining variables have a **significant p-value** defined by some significance threshold.

# Model selection

- Forward and Backward selections are two specialized cases of *model selection*.
- There are more systematic criteria for choosing an “optimal” member in the path of models produced by forward or backward stepwise selection.
  - Especially for time-series data.
- These include **Mallow's  $C_p$** , **Akaike information criterion (AIC)**, **Bayesian information criterion (BIC)**, **adjusted  $R^2$**  and **Cross-validation (cv)**.

### Q3. How well does the model fit the data?

- $R^2$  fails to be a good judge: adding more predictor variables always increases  $R^2$ !
- We need to have **some punishments** for those high  $R^2$  cases with high  $p$ .

### Q3. How well does the model fit the data?

- $R^2$  fails to be a good judge: adding more predictor variables always increases  $R^2$ !
- We need to have **some punishments** for those high  $R^2$  cases with high  $p$ .

$$R_{adj}^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - p}$$

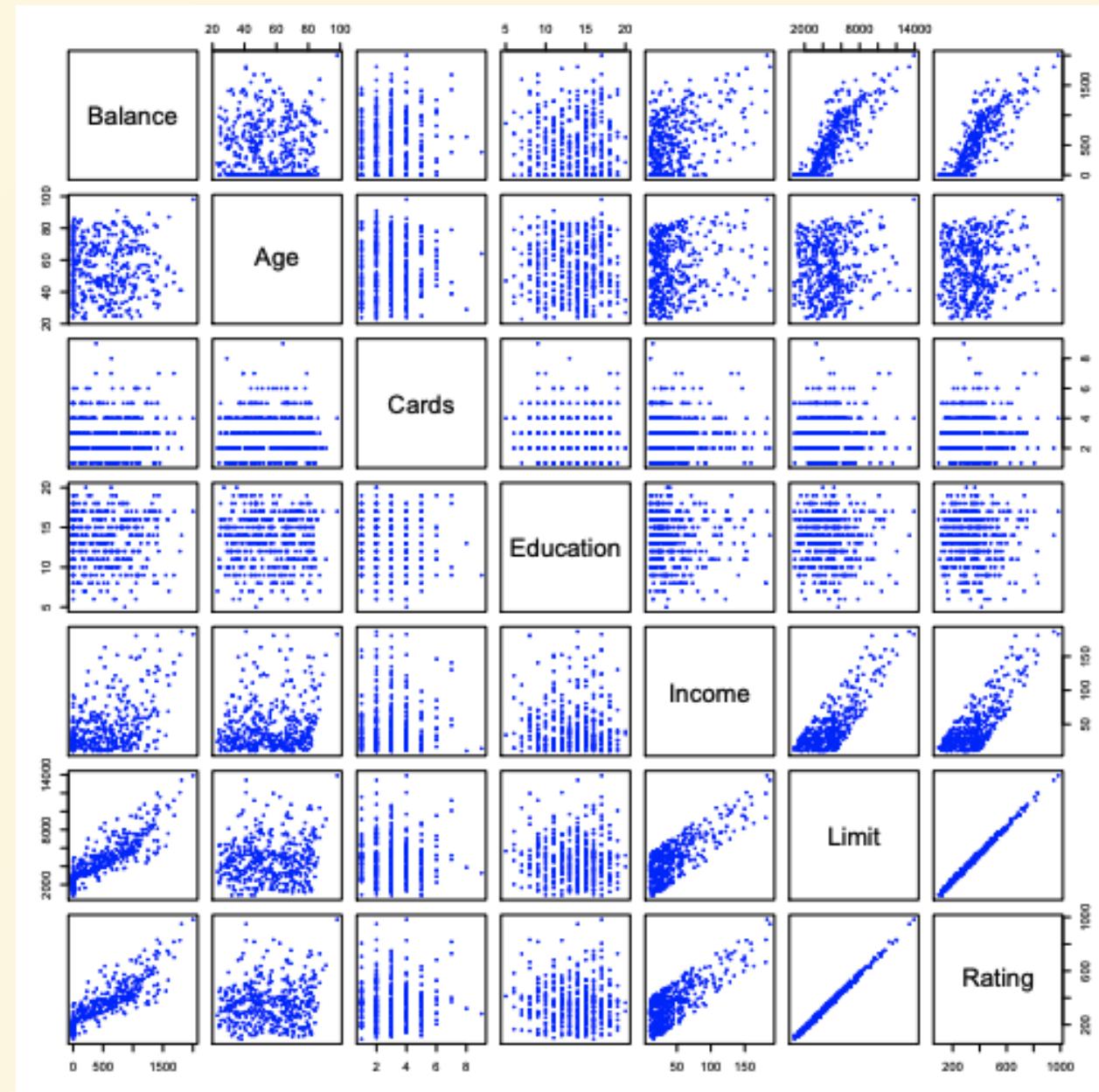
- where  $n$  is # of observations and  $p$  is # of predictors.

## Other Considerations in the Regression Model

- Some predictors are not **quantitative** but are *qualitative*.
- Also called *categorical/factor* predictors:  
gender, student/martial status, ethnicity, ....

Motivating example: a credit card company (say Bank of China) has the following data about its clients:

- Balance, Age, Cards, Education, Income, Limit, Rating



## Qualitative Predictors – continued

Example: investigate differences in credit card balance between males and females, ignoring the other variables.

A *dummy variable* for gender:

$$x_i = \begin{cases} 1 & \text{if i-th person is female} \\ 0 & \text{if i-th person is male} \end{cases}$$

Model:  $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ .

**Interpretation?**

## Results for gender model:

|                | <b>Coefficient</b> | <b>Std. Error</b> | <b>t-statistic</b> | <b>p-value</b> |
|----------------|--------------------|-------------------|--------------------|----------------|
| Intercept      | 509.80             | 33.13             | 15.389             | <0.0001        |
| gender[Female] | 19.73              | 46.05             | 0.429              | 0.6690         |

## Qualitative predictors with more than two levels

- With more than two levels, we create additional dummy variables.
- For example, for the ethnicity variable (Asian/African/American) we create two dummy variables:
  - $x_{i1} = 1$  if i-th person is Asian, or 0 otherwise;
  - $x_{i2} = 1$  if i-th person is African, or 0 otherwise;
- There will always be one fewer dummy variable than the number of levels. The level with no dummy variable —American in this example — is known as the **baseline**.

## Results for ethnicity

|                    | Coefficient | Std. Error | t-stat. | p-value  |
|--------------------|-------------|------------|---------|----------|
| Intercept          | 531.00      | 46.32      | 11.464  | < 0.0001 |
| ethnicity[Asian]   | -18.69      | 65.02      | -0.287  | 0.7740   |
| ethnicity[African] | -12.50      | 56.68      | -0.221  | 0.8260   |

# Extensions of the Linear Model

## Extensions of the Linear Model

- In the ads example, we have assumed that the effect on sales of increasing *one advertising medium* is independent of the amount spent on *the other media*. (**No Interactions**)
- However, suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases.
  - In econ (marketing), this is known as a complementary (synergy) effect
  - in statistics it is referred to as an **interaction effect**.

## Modelling interactions – Advertising data

$$\begin{aligned}\text{sales} &= \beta_0 + \beta_1 \times \text{TV} + \beta_2 \times \text{radio} + \beta_3 \times (\text{radio} \times \text{TV}) + \epsilon \\ &= \beta_0 + (\beta_1 + \beta_3 \times \text{radio}) \times \text{TV} + \beta_2 \times \text{radio} + \epsilon\end{aligned}$$

- Implications: when the expenses on radio ads get higher, the **marginal benefit** of expenses on TV ads get higher!

# Modelling interactions – Advertising data

Results as below. **Interpretation?**

|           | <b>Coefficient</b> | <b>Std. Error</b> | <b>t-statistic</b> | <b>p-value</b> |
|-----------|--------------------|-------------------|--------------------|----------------|
| Intercept | 6.7502             | 0.248             | 27.23              | <0.0001        |
| TV        | 0.0191             | 0.002             | 12.70              | <0.0001        |
| radio     | 0.0289             | 0.009             | 3.24               | 0.0014         |
| TV×radio  | 0.0011             | 0.000             | 20.73              | <0.0001        |

# Interpretation

## Interactions are important:

- The p-value for the interaction term  $TV \times \text{radio}$  is extremely low, indicating that there is strong evidence for  $H_A : \beta_3 \neq 0$ .
- The  $R^2$  for the interaction model is 96.8%, compared to only 89.7% for the model that predicts sales using TV and radio without an interaction term.

## Interpretation – continued

- This means that  $(96.8 - 89.7)/(100 - 89.7) = 69\%$  of the variability in sales that remains after fitting the additive model has been explained by the interaction term.
- The coefficient estimates in the table suggest that an increase in TV advertising of \$1,000 is associated with increased sales of  $(\hat{\beta}_1 + \hat{\beta}_3 \times \text{radio}) \times 1000 = 19 + 1.1 \times \text{radio}$  units.
- An increase in radio advertising of \$1,000 will be associated with an increase in sales of  $(\hat{\beta}_2 + \hat{\beta}_3 \times \text{TV}) \times 1000 = 29 + 1.1 \times \text{TV}$  units.

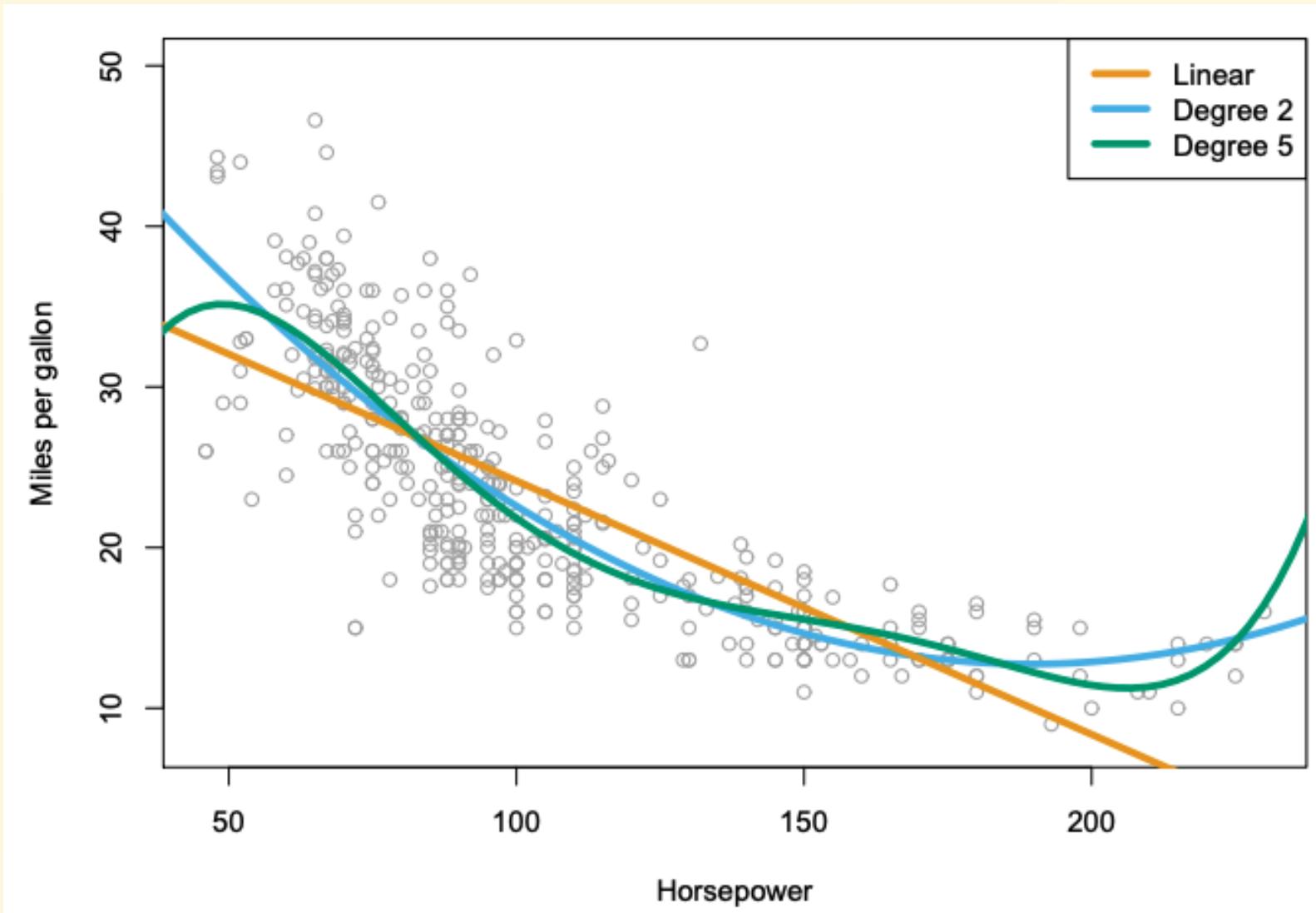
# Hierarchy

- Sometimes it is the case that an interaction term has a very small p-value, but the associated main effects (in this case, TV and radio) do not.
- The **hierarchy principle**:  
*If we include an interaction in a model, we should also include the main effects, even if the p-values associated with their coefficients are not significant.*

# Hierarchy

- The rationale for this principle is that interactions are hard to interpret in a model without main effects – their meaning is changed.
- Specifically, the interaction terms also contain main effects, if the model has no main effect terms.

# Another extension: Incorporating non-linear effects



The figure suggests that

- $\text{mpg} = \beta_0 + \beta_1 \times \text{horsepower} + \beta_2 \times \text{horsepower}^2 + \epsilon$

may provide a better fit.

The figure suggests that

- $\text{mpg} = \beta_0 + \beta_1 \times \text{horsepower} + \beta_2 \times \text{horsepower}^2 + \epsilon$

may provide a better fit.

|                         | <b>Coefficient</b> | <b>Std. Error</b> | <b>t-statistic</b> | <b>p-value</b> |
|-------------------------|--------------------|-------------------|--------------------|----------------|
| Intercept               | 56.9001            | 1.8004            | 31.6               | <0.0001        |
| horsepower              | -0.4662            | 0.0311            | -15.0              | <0.0001        |
| horsepower <sup>2</sup> | 0.0012             | 0.0001            | 10.1               | <0.0001        |

# Generalizations of the Linear Model

- **Classification problems:** logistic regression, support vector machines
- **Non-linearity:** kernel smoothing, splines and generalized additive models, nearest neighbor methods.
- **Interactions:** Tree-based methods, bagging, random forests and boosting (these also capture non-linearities)
- **Regularized fitting:** Ridge regression and lasso