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Multiple linear regression
Model:
Y =00+b51 X1+ + By Xpt+e

We interpret 3; as the average effect of a unit increase in X; on
Y, holding all other predictors fixed ("ceteris paribus").

In the advertising example:

sales = By + B1 - TV + By - radio + (B3 - newspaper + ¢



Interpreting regression coefficients
The ideal scenario is when all predictors are uncorrelated:

e An increase in the value of X does not affect the value of X5

e Atrial/experiment design is called a balanced design in that
case, and each coefficient can be estimated and tested
separately

Interpretations such as “a unit change in X is associated with a

B; change in Y, while all the other variables stay fixed”, are
possible.



Interpreting regression coefficients

e Correlations amongst predictors cause problems:

1. The variance of all coefficients tends to increase, sometimes
dramatically

2. Interpretations become hazardous — when X, changes,
everything else changes.

e Claims of causality should be avoided for observational data

o Indentifying causality is a big topic in economics.
We'll touch on that topic later in this course.



The woes of (interpreting) regression coefficients

« The regression coefficient 3, estimates the expected change in
Y per unit change in X, with all other predictors held fixed.

e When predictors are correlated, they change together!



Two Examples

1. Y = total amount of paper money in your pocket;
X1 = # of papers; Xo = # of 10- and 20- RMB papers.
By itself, regression coefficients of Y on X5 will be > 0.
But how about with X in the model?



Two Examples

1. Y = total amount of paper money in your pocket;
X1 = # of papers; Xo = # of 10- and 20- RMB papers.
By itself, regression coefficients of Y on X5 will be > 0.
But how about with X in the model?

2. Y = number of tackles by a football player in a season;
W and H are his weight and height. Fitted regression model is

Y = bo + 0.5W — 0.10H. How do we interpret Bg < 0?



Interpreting regression coefficients

“The only way to find out what will happen when a complex system
is disturbed is to disturb the system, not merely to observe it
passively.” -- Fred Mosteller and John Tukey

e These are said by statisticians. What can we (economists) do to
deal with correlations between X;'s?



Interpreting regression coefficients

“The only way to find out what will happen when a complex system
is disturbed is to disturb the system, not merely to observe it
passively.” -- Fred Mosteller and John Tukey

Economists Esther and Banerjee
won Nobel Prize in 2019 for
their usage of ‘randomised
control trials’ (RCT) in
economics.
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Estimation and Prediction for Multiple Regression

e Given estimates By, B1,..., Bp, We can make predictions using:

§ = Bo+ Prar + -+ + By,

e LS estimators are obtained by minimizing the RSS:

n

‘min RSS = z:(yZ — 9;)°
/307"'75}) i—=1
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Results for advertising data

Coefficient Std. Error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper -0.001 0.0059 -0.18 0.8599
Correlations:
TV radio newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000
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Some important questions
1. Is at least one of the predictors X1, X, ..., X, useful in

predicting the response?

2. Do all the predictors help to explain Y , or only part of the
predictors useful?

3. How well does the linear model fit the data?
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Q1: Is at least one of the predictors useful in predicting Y ?

e We can use the F-statistic:

7 (TSS — RSS)/p 7
" RSS/(n—p-—1) PP

Quantity Value

Residual Standard Error | 1.69
R? 0.897
F-statistic 570




Q2: Do all the predictors help to explain Y, or only part of the
predictors useful?

e Essentially, this is to decide on the important variables.

e The most direct approach is called all subsets or best subsets
regression:

o we compute the least squares fit for all possible subsets;

o then choose between them based on some criterion that
balances training error with model size.

e However, usually we cannot examine all possible models. For
example, when p = 40, there are 2P > a billion models!
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Forward selection

Begin with the null model — a model that contains an intercept
but no predictors.

Fit p simple linear regressions and add to the null model the
variable that results in the lowest RSS.

Add to that model the variable that results in the lowest RSS
amongst all two-variable models.

Continue until some stopping rule is satisfied, for example
when all remaining variables have a p-value above some
threshold
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Backward selection

e Start with all variables in the model.

e Remove the variable with the largest p-value — that is, the
variable that is the least statistically significant.

e The new (p — 1)-variable model is fit, and the variable with the
largest p-value is removed.

e Continue until a stopping rule is reached. For instance, we may
stop when all remaining variables have a significant p-value
defined by some significance threshold.
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Model selection

e Forward and Backward selections are two specialized cases of
model selection.

e There are more systematic criteria for choosing an “optimal”
member in the path of models produced by forward or
backward stepwise selection.

o Especially for time-series data.

e These include Mallow’s C,,, Akaike information criterion (AIC),
Bayesian information criterion (BIC), adjusted R? and Cross-
validation (CV).
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Q3. How well does the model fit the data?

e R? fails to be a good judge: adding more predictor variables
always increases R?!

e We need to have some punishments for those high R? cases
with high p.
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Q3. How well does the model fit the data?

e R? fails to be a good judge: adding more predictor variables
always increases R?!

e We need to have some punishments for those high R? cases
with high p.
(1 - R*)(n—1)
n—p

R’

adj —

e where n iIs # of observations and p is # of predictors.
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Other Considerations in the Regression Model

e Some predictors are not quantitative but are qualitative.

e Also called categorical/factor predictors:
gender, student/martial status, ethnicity, ....

Motivating example: a credit card company (say Bank of China)
has the following data about its clients:

e Balance, Age, Cards, Education, Income, Limit, Rating
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Qualitative Predictors — continued

Example: investigate differences in credit card balance between
males and females, ignoring the other variables.

A dummy variable for gender:

L; =

1 ifi-th person is female
0 if i-th person is male

Model: y; = By + Bix; + €;.
Interpretation?
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Results for gender model:

Coefficient Std. Error t-statistic p-value

Intercept

509.80 33.13 15.389 <0.0001

gender[Female]

19.73 46.05 0.429 0.6690
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Qualitative predictors with more than two levels

e With more than two levels, we create additional dummy
variables.

e For example, for the ethnicity variable (Asian/African/American)
we create two dummy variables:

o x;1 = 1 if i-th persion is Asian, or 0 otherwise;
o ;9 = 1 if i-th persion is African, or 0 otherwise;
e There will always be one fewer dummy variable than the

number of levels. The level with no dummy variable —American
in this example — is known as the baseline.
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Results for ethnicity

Coefficient Std. Error t-stat. p-value
Intercept 531.00 46.32 11.464 | < 0.0001
ethnicity[Asian] | -18.69 65.02 -0.287 | 0.7740
ethnicity[African] | -12.50 56.68 -0.221 | 0.8260
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Extensions of the Linear Model

28



Extensions of the Linear Model

e In the ads example, we have assumed that the effect on sales of
Increasing one advertising medium is independent of the
amount spent on the other media. (No Interactions)

e However, suppose that spending money on radio advertising
actually increases the effectiveness of TV advertising, so that
the slope term for TV should increase as radio increases.

o In econ (marketing), this is known as a complementary
(synergy) effect

o in statistics it is referred to as an interaction effect.
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Modelling interactions — Advertising data

sales = By + 1 X TV+ B3 x radio + B3 X (radio x TV) + ¢
= Bo + (B1 + B3 X radio) X TV + B2 X radio + €

e Implications: when the expenses on radio ads get higher, the
marginal benefit of expenses on TV ads get higher!
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Modelling interactions — Advertising data

Results as below. Interpretation?

Coefficient Std. Error t-statistic

Intercept | 6.7502 0.248 27.23 <0.0001
TV 0.0191 0.002 12.70 <0.0001
radio 0.0289 0.009 3.24 0.0014

TVxradio | 0.0011 0.000 20.73 <0.0001




Interpretation

Interactions are important:

e The p-value for the interaction term TVxradio is extremely low,
indicating that there is strong evidence for H4 : B3 # 0.

e The R? for the interaction model is 96.8%, compared to only
89.7% for the model that predicts sales using TV and radio
without an interaction term.
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Interpretation — continued

e This means that (96.8 - 89.7)/(100 - 89.7) = 69% of the variability
In sales that remains after fitting the additive model has been
explained by the interaction term.

e The coefficient estimates in the table suggest that an increase
in TV advertising of $1,000 is associated with increased sales of

(81 + B3 X radio) x 1000 = 19 + 1.1 x radio units.

e An increase in radio advertlsmg of $1 000 will be associated

with an increase in sales of (83 + A3 x TV) x 1000 = 29 +
1.1 X TV units.
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Hierarchy

e Sometimes it is the case that an interaction term has a very
small p-value, but the associated main effects (in this case, TV
and radio) do not.

e The hierarchy principle:
If we Include an interaction in a model, we should also include
the main effects, even If the p-values associated with their
coefficients are not significant.
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Hierarchy

e The rationale for this principle is that interactions are hard to
Interpret in a model without main effects — their meaning is
changed.

e Specifically, the interaction terms also contain main effects, if
the model has no main effect terms.

35



Another extension: Incorporating non-linear effects
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The figure suggests that
e mpg = By + B1 x horsepower + 85 x horsepower

may provide a better fit.

2

+ €
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The figure suggests that

e mpg = By + B1 x horsepower + B x horsepower? + €

may provide a better fit.

Coefficient Std. Error t-statistic

ntercept 56.9001 1.8004 31.6 <0.0001
norsepower | -0.4662 0.0311 -15.0 <0.0001
horsepower? | 0.0012 0.0001 101 <0.0001




Generalizations of the Linear Model

Classification problems: logistic regression, support vector
machines

Non-linearity: kernel smoothing, splines and generalized
additive models, nearest neighbor methods.

Interactions: Tree-based methods, bagging, random forests and
boosting (these also capture non-linearities)

Regularized fitting: Ridge regression and lasso

39



