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Multiple linear regression

Model:

Y = β ​ +0 β ​X ​ +1 1 ⋯ + β ​X ​ +p p ϵ

We interpret  as the average effect of a unit increase in  on
, holding all other predictors fixed ("ceteris paribus").

β ​j X ​j

Y
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Multiple linear regression

Model:

Y = β ​ +0 β ​X ​ +1 1 ⋯ + β ​X ​ +p p ϵ

We interpret  as the average effect of a unit increase in  on
, holding all other predictors fixed ("ceteris paribus").

In the advertising example:

sales = β ​ +0 β ​ ⋅1 TV + β ​ ⋅2 radio + β ​ ⋅3 newspaper + ϵ

β ​j X ​j

Y
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Interpreting regression coefficients

The ideal scenario is when all predictors are uncorrelated:

An increase in the value of  does not affect the value of 

A trial/experiment design is called a balanced design in that
case, and each coefficient can be estimated and tested
separately

Interpretations such as “a unit change in  is associated with a
 change in , while all the other variables stay fixed”, are

possible.

X ​1 X ​2

X ​j

β ​j Y
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Interpreting regression coefficients

Correlations amongst predictors cause problems:
1. The variance of all coefficients tends to increase, sometimes
dramatically

2. Interpretations become hazardous — when  changes,
everything else changes.

Claims of causality should be avoided for observational data
Indentifying causality is a big topic in economics.
We'll touch on that topic later in this course.

X ​j
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The woes of (interpreting) regression coefficients

The regression coefficient  estimates the expected change in
 per unit change in , with all other predictors held fixed.

When predictors are correlated, they change together!

β ​j

Y X ​j
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Two Examples

1.  total amount of paper money in your pocket;
 # of papers;  # of 10- and 20- RMB papers.

By itself, regression coefficients of  on  will be .
But how about with  in the model?

Y =
X ​ =1 X ​ =2

Y X ​2 > 0
X ​1
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Two Examples

1.  total amount of paper money in your pocket;
 # of papers;  # of 10- and 20- RMB papers.

By itself, regression coefficients of  on  will be .
But how about with  in the model?

2.  number of tackles by a football player in a season;
 and  are his weight and height. Fitted regression model is

. How do we interpret ?

Y =
X ​ =1 X ​ =2

Y X ​2 > 0
X ​1

Y =
W H

=Ŷ b ​ +0 0.5W − 0.10H ​ ​ <β̂2 0
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Interpreting regression coefficients

“The only way to find out what will happen when a complex system
is disturbed is to disturb the system, not merely to observe it
passively.” -- Fred Mosteller and John Tukey

These are said by statisticians. What can we (economists) do to
deal with correlations between 's?X ​i
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Interpreting regression coefficients

“The only way to find out what will happen when a complex system
is disturbed is to disturb the system, not merely to observe it
passively.” -- Fred Mosteller and John Tukey

Economists Esther and Banerjee
won Nobel Prize in 2019 for
their usage of ‘randomised
control trials’ (RCT) in
economics.
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Estimation and Prediction for Multiple Regression

Given estimates , ,..., , we can make predictions using:

​ =ŷ ​ ​ +β̂0 ​ ​x ​ +β̂1 1 ⋯ + ​ ​x ​β̂p p

LS estimators are obtained by minimizing the RSS:

​ RSS =
​ ​,…, ​ ​β̂0 β̂p

min ​(y ​ −
i=1

∑
n

i ​ ​)ŷi
2

​ ​β̂0 ​ ​β̂1 ​ ​β̂p
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Example: .p = 2
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Results for advertising data
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Some important questions

1. Is at least one of the predictors , , ...,  useful in
predicting the response?

2. Do all the predictors help to explain  , or only part of the
predictors useful?

3. How well does the linear model fit the data?

X ​1 X ​2 X ​p

Y
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Q1: Is at least one of the predictors useful in predicting ?

We can use the F-statistic:

F = ​ ∼
RSS/(n − p − 1)
(TSS − RSS)/p

F ​p,n−p−1

Quantity Value

Residual Standard Error 1.69

0.897

F-statistic 570

Y

R2
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Q2: Do all the predictors help to explain Y , or only part of the
predictors useful?

Essentially, this is to decide on the important variables.

The most direct approach is called all subsets or best subsets
regression:
we compute the least squares fit for all possible subsets;
then choose between them based on some criterion that
balances training error with model size.

However, usually we cannot examine all possible models. For
example, when , there are  a billion models!p = 40 2 ≥p
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Forward selection

Begin with the null model — a model that contains an intercept
but no predictors.
Fit  simple linear regressions and add to the null model the
variable that results in the lowest RSS.
Add to that model the variable that results in the lowest RSS
amongst all two-variable models.
Continue until some stopping rule is satisfied, for example
when all remaining variables have a p-value above some
threshold

p
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Backward selection

Start with all variables in the model.

Remove the variable with the largest p-value — that is, the
variable that is the least statistically significant.

The new -variable model is fit, and the variable with the
largest p-value is removed.

Continue until a stopping rule is reached. For instance, we may
stop when all remaining variables have a significant p-value
defined by some significance threshold.

(p − 1)
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Model selection

Forward and Backward selections are two specialized cases of
model selection.

There are more systematic criteria for choosing an “optimal”
member in the path of models produced by forward or
backward stepwise selection.

Especially for time-series data.

These include Mallow’s , Akaike information criterion (AIC),
Bayesian information criterion (BIC), adjusted  and Cross-
validation (CV).

C ​p

R2
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Q3. How well does the model fit the data?

 fails to be a good judge: adding more predictor variables
always increases !

We need to have some punishments for those high  cases
with high .

R2

R2

R2

p
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Q3. How well does the model fit the data?

 fails to be a good judge: adding more predictor variables
always increases !

We need to have some punishments for those high  cases
with high .

R ​ =adj
2 1 − ​

n − p

(1 − R )(n − 1)2

where  is # of observations and  is # of predictors.

R2

R2

R2

p

n p
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Other Considerations in the Regression Model

Some predictors are not quantitative but are qualitative.

Also called categorical/factor predictors:
gender, student/martial status, ethnicity, ....

Motivating example: a credit card company (say Bank of China)
has the following data about its clients:

Balance, Age, Cards, Education, Income, Limit, Rating
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Qualitative Predictors — continued

Example: investigate differences in credit card balance between
males and females, ignoring the other variables.

A dummy variable for gender:

x ​ =i ​ ​{1
0

if i-th person is female
if i-th person is male

Model: .
Interpretation?

y ​ =i β ​ +0 β ​x ​ +1 i ϵ ​i
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Results for gender model:

Coefficient Std. Error t-statistic p-value

Intercept 509.80 33.13 15.389 <0.0001

gender[Female] 19.73 46.05 0.429 0.6690
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Qualitative predictors with more than two levels

With more than two levels, we create additional dummy
variables.

For example, for the ethnicity variable (Asian/African/American)
we create two dummy variables:

 if i-th persion is Asian, or 0 otherwise;

 if i-th persion is African, or 0 otherwise;

There will always be one fewer dummy variable than the
number of levels. The level with no dummy variable —American
in this example — is known as the baseline.

x ​ =i1 1

x ​ =i2 1
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Results for ethnicity

Coefficient Std. Error t-stat. p-value

Intercept 531.00 46.32 11.464 < 0.0001

ethnicity[Asian] -18.69 65.02 -0.287 0.7740

ethnicity[African] -12.50 56.68 -0.221 0.8260
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Extensions of the Linear Model
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Extensions of the Linear Model

In the ads example, we have assumed that the effect on sales of
increasing one advertising medium is independent of the
amount spent on the other media. (No Interactions)

However, suppose that spending money on radio advertising
actually increases the effectiveness of TV advertising, so that
the slope term for TV should increase as radio increases.

In econ (marketing), this is known as a complementary
(synergy) effect
in statistics it is referred to as an interaction effect.
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Modelling interactions — Advertising data

​ ​

sales = β ​ + β ​ × TV + β ​ × radio + β ​ × (radio × TV) + ϵ0 1 2 3

= β ​ + (β ​ + β ​ × radio) × TV + β ​ × radio + ϵ0 1 3 2

Implications: when the expenses on radio ads get higher, the
marginal benefit of expenses on TV ads get higher!
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Modelling interactions — Advertising data

Results as below. Interpretation?

Coefficient Std. Error t-statistic p-value

Intercept 6.7502 0.248 27.23 <0.0001

TV 0.0191 0.002 12.70 <0.0001

radio 0.0289 0.009 3.24 0.0014

TV×radio 0.0011 0.000 20.73 <0.0001
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Interpretation

Interactions are important:

The p-value for the interaction term TV×radio is extremely low,
indicating that there is strong evidence for .

The  for the interaction model is 96.8%, compared to only
89.7% for the model that predicts sales using TV and radio
without an interaction term.

H ​ :A β ​ =3  0

R2
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Interpretation — continued

This means that (96.8 − 89.7)/(100 − 89.7) = 69% of the variability
in sales that remains after fitting the additive model has been
explained by the interaction term.

The coefficient estimates in the table suggest that an increase
in TV advertising of $1,000 is associated with increased sales of

 units.

An increase in radio advertising of $1, 000 will be associated
with an increase in sales of 

 units.

( ​ ​ +β̂1 ​ ​ ×β̂3 radio) × 1000 = 19 + 1.1 × radio

( ​ ​ +β̂2 ​ ​ ×β̂3 TV) × 1000 = 29 +
1.1 × TV
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Hierarchy

Sometimes it is the case that an interaction term has a very
small p-value, but the associated main effects (in this case, TV
and radio) do not.

The hierarchy principle:
If we include an interaction in a model, we should also include
the main effects, even if the p-values associated with their
coefficients are not significant.
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Hierarchy

The rationale for this principle is that interactions are hard to
interpret in a model without main effects — their meaning is
changed.

Specifically, the interaction terms also contain main effects, if
the model has no main effect terms.
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Another extension: Incorporating non-linear effects
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The figure suggests that

mpg =  +  × horsepower +  × horsepower  + 

may provide a better fit.

β ​0 β ​1 β ​2
2 ϵ
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The figure suggests that

mpg =  +  × horsepower +  × horsepower  + 

may provide a better fit.

Coefficient Std. Error t-statistic p-value

Intercept 56.9001 1.8004 31.6 <0.0001

horsepower -0.4662 0.0311 -15.0 <0.0001

horsepower 0.0012 0.0001 10.1 <0.0001

β ​0 β ​1 β ​2
2 ϵ

2
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Generalizations of the Linear Model

Classification problems: logistic regression, support vector
machines

Non-linearity: kernel smoothing, splines and generalized
additive models, nearest neighbor methods.

Interactions: Tree-based methods, bagging, random forests and
boosting (these also capture non-linearities)

Regularized fitting: Ridge regression and lasso
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