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What we have covered:

Linear (and additive) models:

Y = β ​ +0 β ​X ​ +1 1 ⋯ + β ​X ​p p

Least squares (i.e., minimizing the MSE on the training dataset)
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Roadmap

Ch6: discuss some ways in which the linear model can be
improved

The model is still linear, but we replace least squares with
alternative fitting procedures

Ch7: generalize the linear model in order to accommodate non-
linear, but still additive, relationships.

Ch8: more general non-linear models.
For example: trees, boosting
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Beyond Least Squares

Ch6 sticks to linear model: Despite its simplicity, the linear model
has advantages in terms of interpretability and often shows good
predictive performance.

We want to improve on the Least Squares by

1. selecting features: improve on interpretability
2. shrinking the coefficients of features: improve on predictive
performance
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Why consider alternatives to least squares?

Prediction Accuracy: especially when , to control the
variance.

Model Interpretability: By removing irrelevant features — that
is, by setting the corresponding coefficient estimates to zero —
we can obtain a model that is more easily interpreted.
We will present some approaches for automatical feature
selection.

p > n
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Three classes of methods

1. Subset Selection. First, identify a subset of the predictors that
are related to the response, then fit a model using LS.

Method of exhaustion, forward and backward stepwise
methods
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Three classes of methods

2. Shrinkage. Fit a model involving all p predictors, but the
estimated coefficients are shrunken towards zero relative to the
least squares estimates.

This shrinkage (also known as regularization) has the effect
of reducing variance and can also perform variable selection.
We do not select the features explicitly, but rather penalize
the model for the number of coefficients or the size of
coefficients in various ways.
Lasso and Ridge Regression are two popular shrinkage
methods.
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3. Dimension Reduction.
Project the  predictors into a -dimensional subspace,
where . This is achieved by computing  different
linear combinations, or projections, of the variables.
Then these  projections are used as predictors to fit a
linear regression model by least squares.

Final Remarks:

These three classes of methods (or ideas) also apply to other
models, while we focus on linear models here.

p M

M < p M

M
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1. Subset Selection

Very simple idea:

Our data contains  predictors, but we have a simpler model
that involves only a subset of those predictors.

The natural way is to consider every possible subset of p
predictors (  in total), and then select the "best subset".

p

2p
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1. Subset Selection

Step 1. For :

1. Fit all  models that contain exactly  predictors.
2. Pick the "best" (i.e., having the smallest RSS/MSE) among these
models. Call it .

Step 2. Select a single "best" model from the  candidates, , ...,
, based on:

adjusted ,  (AIC), BIC, or cross-validated prediction error.

k = 1, 2, ..., p

​(
k
p) k

M ​k

p M ​1

M ​p

R2 C ​p
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Example: Credit data set

Ten predictors ( ), including credit limit, credit range, # of
cards, and so on. The response variable  is card balance.

p = 10
Y
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Stepwise Selection

When  is not (very) small, best subset selection method fails for
two reasons:

1. the computational cost
2. overfitting

For both of these reasons, stepwise methods, which explore a far
more restricted set of models, are attractive alternatives to best
subset selection

Forward Stepwise Selection and Backward Stepwise Selection

p
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Choosing the best Model

The model containing all of the predictors will always have the
smallest RSS and the largest , since these quantities are
related to the training error.
We wish to choose a model with low test error, not a model
with low training error. Recall that training error is usually a
poor estimate of test error.
Therefore, RSS and  are not suitable for selecting the best
model among a collection of models with different numbers of
predictors.

R2

R2
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Estimating test error: two approaches

We choose the best model based on the test error, not the
training error.

We can indirectly estimate test error by making an adjustment
to the training error to account for the bias due to overfitting.

We can directly estimate the test error, using either a validation
set approach or a cross-validation approach.

Also known as data-driven model selection.

We illustrate both approaches next.
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, AIC, BIC, and Adjusted 

These techniques can be viewed as indirect estimates of test
error.

They adjust the training error for the model size, and can be
used to select among a set of models with different numbers
of variables.

The next figure displays , BIC, and Adjusted  for the best
model of each size produced by best subset selection on the
credit dataset.

C ​p R2

C ​p R2
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Credit data example
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Details of these criterion:  and AIC

Mallow’s  defined as below, where  is the total # of
parameters used and  is an estimate of the variance of .

C ​ =p ​ (RSS +
n

1
2d ),σ̂2

The AIC criterion is defined for a large class of models fit by
maximum likelihood:

AIC = −2 log L + 2d

where  is the maximized value of the likelihood function.

C ​p

C ​p d

σ̂ ϵ
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Details of these criterion:  and AIC

In the case of the linear model with Gaussian errors, maximum
likelihood and least squares are the same thing, and  and AIC
are equivalent.

C ​p

C ​p
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Details of these criterion: BIC

BIC = ​ (RSS +
n

1
log(n)d )σ̂2

We select the model that has the lowest BIC value. Like Mallow's
, the BIC will penalize a model for having too many

predictors (ie, a higher ).

Compared to , BIC replaces the  in  by .

Since  for any , BIC generally places a heavier
penalty on models with many variables. So the selected "best
model" is smaller than . (See the credit example above)

C ​p

d

C ​p 2dσ̂2 C ​p log(n)dσ̂2

log n > 2 n > 7

C ​p
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Details of these criterion: adjusted 

Adjusted R =2 1 − ​ .
TSS/(n − 1)

RSS/(n − d − 1)

Unlike , AIC and BIC, a better model tends to have a higher
adjusted .

Maximizing adjusted  is equivalent to minimizing .

An advantage of adjusted  over /AIC/BIC is that it does
not require computing an estimate of .

R2

C ​p

R2

R2
​

n−d−1
RSS

R2 C ​p

σ2
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From selection by criteria to data-driven selection

The first three criteria ( , AIC and BIC) are developed by
statisticians, each having its own strength in different setups.

Read this article if you are interested in the statistical
theories behind these criteria.

Adjusted  has the advantages of being easier to compute and
"understand."

With the rapid growth of the machine learning literature, more
researchers start to adopt the data-driven selection methods:
validation and cross-validation.

C ​p

R2
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https://cosx.org/2015/08/some-basic-ideas-and-methods-of-model-selection/

